高维数据中的改进型高斯均值矩阵估计器

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Arash A. Foroushani, Sévérien Nkurunziza
{"title":"高维数据中的改进型高斯均值矩阵估计器","authors":"Arash A. Foroushani,&nbsp;Sévérien Nkurunziza","doi":"10.1016/j.jmva.2025.105424","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a class of improved estimators for the mean parameter matrix of a multivariate normal distribution with an unknown variance–covariance matrix. In particular, the main results of Chételat and Wells (2012) are established in their full generalities and we provide the corrected version of their Theorem 2. Specifically, we generalize the existing results in three ways. First, we consider a parametric estimation problem which encloses as a special case the one about the vector parameter. Second, we propose a class of James–Stein matrix estimators and, we establish a necessary and a sufficient condition for any member of the proposed class to have a finite risk function. Third, we present the conditions for the proposed class of estimators to dominate the maximum likelihood estimator. On the top of these interesting contributions, the additional novelty consists in the fact that, we extend the methods suitable for the vector parameter case and the derived results hold in the classical case as well as in the context of high and ultra-high dimensional data.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"208 ","pages":"Article 105424"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Gaussian mean matrix estimators in high-dimensional data\",\"authors\":\"Arash A. Foroushani,&nbsp;Sévérien Nkurunziza\",\"doi\":\"10.1016/j.jmva.2025.105424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a class of improved estimators for the mean parameter matrix of a multivariate normal distribution with an unknown variance–covariance matrix. In particular, the main results of Chételat and Wells (2012) are established in their full generalities and we provide the corrected version of their Theorem 2. Specifically, we generalize the existing results in three ways. First, we consider a parametric estimation problem which encloses as a special case the one about the vector parameter. Second, we propose a class of James–Stein matrix estimators and, we establish a necessary and a sufficient condition for any member of the proposed class to have a finite risk function. Third, we present the conditions for the proposed class of estimators to dominate the maximum likelihood estimator. On the top of these interesting contributions, the additional novelty consists in the fact that, we extend the methods suitable for the vector parameter case and the derived results hold in the classical case as well as in the context of high and ultra-high dimensional data.</div></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"208 \",\"pages\":\"Article 105424\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X25000193\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000193","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一类方差-协方差矩阵未知的多元正态分布的平均参数矩阵的改进估计。特别是,chsamtelat和Wells(2012)的主要结果是建立在他们的全部概论中,我们提供了他们定理2的更正版本。具体来说,我们以三种方式概括现有的结果。首先,我们考虑了一个参数估计问题,其中包含了向量参数估计的特殊情况。其次,我们提出了一类James-Stein矩阵估计量,并给出了该类中任何成员具有有限风险函数的充分必要条件。第三,我们给出了这类估计量优于极大似然估计量的条件。在这些有趣的贡献之上,额外的新颖性在于,我们扩展了适用于向量参数情况的方法,并且推导出的结果适用于经典情况以及高维和超高维数据的背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Gaussian mean matrix estimators in high-dimensional data
In this paper, we introduce a class of improved estimators for the mean parameter matrix of a multivariate normal distribution with an unknown variance–covariance matrix. In particular, the main results of Chételat and Wells (2012) are established in their full generalities and we provide the corrected version of their Theorem 2. Specifically, we generalize the existing results in three ways. First, we consider a parametric estimation problem which encloses as a special case the one about the vector parameter. Second, we propose a class of James–Stein matrix estimators and, we establish a necessary and a sufficient condition for any member of the proposed class to have a finite risk function. Third, we present the conditions for the proposed class of estimators to dominate the maximum likelihood estimator. On the top of these interesting contributions, the additional novelty consists in the fact that, we extend the methods suitable for the vector parameter case and the derived results hold in the classical case as well as in the context of high and ultra-high dimensional data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信