通过物理交联强化拓扑凝胶:粗粒度分子动力学研究

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yan Tang , Zechuan Yu , D.M. Li , Jia Chen , Jiahui Liu
{"title":"通过物理交联强化拓扑凝胶:粗粒度分子动力学研究","authors":"Yan Tang ,&nbsp;Zechuan Yu ,&nbsp;D.M. Li ,&nbsp;Jia Chen ,&nbsp;Jiahui Liu","doi":"10.1016/j.commatsci.2025.113894","DOIUrl":null,"url":null,"abstract":"<div><div>Slide-ring (SR) gels, characterized by slidable crosslinking sites, exhibit superior ductility and fracture toughness. However, their mechanical strength remains insufficient, limiting their practical applications. A molecular-level understanding is essential for improving the mechanical properties of SR gels. This study introduces a coarse-grained molecular dynamics method to represent 3 types of gels within a unified modeling framework. The method reveals that the maximum sliding distance serves as an upper bound, constraining the strength-ductility tradeoff in SR gels. Furthermore, a novel strategy to surpass this upper limit by incorporating physical crosslinking is proposed. Numerical simulations with varying numbers of physical crosslinking sites demonstrated that incorporating physical crosslinking sites into 75% of the SR molecules provides an optimal strength enhancement. These findings offer valuable insights into the design of strong, tough and ductile SR gels.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"253 ","pages":"Article 113894"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement of topological gels through physical crosslinking: A coarse-grained molecular dynamics study\",\"authors\":\"Yan Tang ,&nbsp;Zechuan Yu ,&nbsp;D.M. Li ,&nbsp;Jia Chen ,&nbsp;Jiahui Liu\",\"doi\":\"10.1016/j.commatsci.2025.113894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Slide-ring (SR) gels, characterized by slidable crosslinking sites, exhibit superior ductility and fracture toughness. However, their mechanical strength remains insufficient, limiting their practical applications. A molecular-level understanding is essential for improving the mechanical properties of SR gels. This study introduces a coarse-grained molecular dynamics method to represent 3 types of gels within a unified modeling framework. The method reveals that the maximum sliding distance serves as an upper bound, constraining the strength-ductility tradeoff in SR gels. Furthermore, a novel strategy to surpass this upper limit by incorporating physical crosslinking is proposed. Numerical simulations with varying numbers of physical crosslinking sites demonstrated that incorporating physical crosslinking sites into 75% of the SR molecules provides an optimal strength enhancement. These findings offer valuable insights into the design of strong, tough and ductile SR gels.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"253 \",\"pages\":\"Article 113894\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702562500237X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562500237X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

滑环(SR)凝胶具有可滑动的交联位点,具有优异的延展性和断裂韧性。然而,它们的机械强度仍然不足,限制了它们的实际应用。分子水平的理解对于提高SR凝胶的力学性能至关重要。本研究引入了一种粗粒度的分子动力学方法,在统一的建模框架内表示三种类型的凝胶。该方法表明,最大滑动距离是约束SR凝胶强度-延性权衡的上界。此外,我们还提出了一种通过物理交联来超越这一上限的新策略。具有不同数量物理交联位点的数值模拟表明,在75%的SR分子中加入物理交联位点可以提供最佳的强度增强。这些发现为设计高强度、韧性和延展性的SR凝胶提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reinforcement of topological gels through physical crosslinking: A coarse-grained molecular dynamics study

Reinforcement of topological gels through physical crosslinking: A coarse-grained molecular dynamics study
Slide-ring (SR) gels, characterized by slidable crosslinking sites, exhibit superior ductility and fracture toughness. However, their mechanical strength remains insufficient, limiting their practical applications. A molecular-level understanding is essential for improving the mechanical properties of SR gels. This study introduces a coarse-grained molecular dynamics method to represent 3 types of gels within a unified modeling framework. The method reveals that the maximum sliding distance serves as an upper bound, constraining the strength-ductility tradeoff in SR gels. Furthermore, a novel strategy to surpass this upper limit by incorporating physical crosslinking is proposed. Numerical simulations with varying numbers of physical crosslinking sites demonstrated that incorporating physical crosslinking sites into 75% of the SR molecules provides an optimal strength enhancement. These findings offer valuable insights into the design of strong, tough and ductile SR gels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信