以二元正交多项式为特征函数的高阶微分算子

IF 1.4 Q2 MATHEMATICS, APPLIED
Misael E. Marriaga
{"title":"以二元正交多项式为特征函数的高阶微分算子","authors":"Misael E. Marriaga","doi":"10.1016/j.rinam.2025.100571","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a systematic method for constructing higher-order partial differential equations for which bivariate orthogonal polynomials are eigenfunctions. Using the framework of moment functionals, the approach is independent of the orthogonality domain’s geometry, enabling broad applicability across different polynomial families. Applications to classical weight functions on the unit disk and triangle modified by measures defined on lower-dimensional manifolds are presented.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100571"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-order differential operators having bivariate orthogonal polynomials as eigenfunctions\",\"authors\":\"Misael E. Marriaga\",\"doi\":\"10.1016/j.rinam.2025.100571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a systematic method for constructing higher-order partial differential equations for which bivariate orthogonal polynomials are eigenfunctions. Using the framework of moment functionals, the approach is independent of the orthogonality domain’s geometry, enabling broad applicability across different polynomial families. Applications to classical weight functions on the unit disk and triangle modified by measures defined on lower-dimensional manifolds are presented.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100571\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种构造二元正交多项式为特征函数的高阶偏微分方程的系统方法。利用矩函数的框架,该方法不依赖于正交域的几何形状,使其广泛适用于不同的多项式族。给出了由低维流形上定义的测度修正的单位盘和三角形上的经典权函数的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order differential operators having bivariate orthogonal polynomials as eigenfunctions
We introduce a systematic method for constructing higher-order partial differential equations for which bivariate orthogonal polynomials are eigenfunctions. Using the framework of moment functionals, the approach is independent of the orthogonality domain’s geometry, enabling broad applicability across different polynomial families. Applications to classical weight functions on the unit disk and triangle modified by measures defined on lower-dimensional manifolds are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信