{"title":"设计催化剂激活区域发散组蛋白乙酰化","authors":"Tamiko Nozaki, Mayu Onoda, Misuzu Habazaki, Yuma Takeuchi, Hisashi Ishida, Yuko Sato, Tomoya Kujirai, Kayo Hanada, Kenzo Yamatsugu, Hitoshi Kurumizaka, Hiroshi Kimura, Hidetoshi Kono, Shigehiro A. Kawashima, Motomu Kanai","doi":"10.1021/jacs.5c01699","DOIUrl":null,"url":null,"abstract":"The “histone code,” defined by the combinatorial patterns of post-translational modifications (PTMs) on histones, plays a pivotal role in chromatin structure and gene expression. Tools for the regioselective introduction of histone PTMs in living cells are critical for dissecting the functions of these epigenetic marks. Here, we report the design and development of three regioselective catalysts that acetylate distinct lysine residues (K43, K108, and K120) on histone H2B. Using a combination of molecular dynamics simulations of catalyst-nucleosome complexes and systematic experimental optimization of catalyst structures, we identified key design principles for achieving regioselectivity. Specifically, excluding highly reactive off-target lysine residues from the catalyst effective region (CER) while maintaining proximity to a target lysine residue proved crucial. Biochemical and cellular analyses of the catalytic histone acetylation revealed that each lysine acetylation elicited unique effects on the binding affinity and activity of nucleosome-interacting molecules, as well as on transcriptional programs and cellular phenotypes. These findings establish a framework for designing regioselective histone acetylation catalysts and advance our understanding of the regulatory mechanisms underlying histone PTMs.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"6 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designer Catalyst-Enabled Regiodivergent Histone Acetylation\",\"authors\":\"Tamiko Nozaki, Mayu Onoda, Misuzu Habazaki, Yuma Takeuchi, Hisashi Ishida, Yuko Sato, Tomoya Kujirai, Kayo Hanada, Kenzo Yamatsugu, Hitoshi Kurumizaka, Hiroshi Kimura, Hidetoshi Kono, Shigehiro A. Kawashima, Motomu Kanai\",\"doi\":\"10.1021/jacs.5c01699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The “histone code,” defined by the combinatorial patterns of post-translational modifications (PTMs) on histones, plays a pivotal role in chromatin structure and gene expression. Tools for the regioselective introduction of histone PTMs in living cells are critical for dissecting the functions of these epigenetic marks. Here, we report the design and development of three regioselective catalysts that acetylate distinct lysine residues (K43, K108, and K120) on histone H2B. Using a combination of molecular dynamics simulations of catalyst-nucleosome complexes and systematic experimental optimization of catalyst structures, we identified key design principles for achieving regioselectivity. Specifically, excluding highly reactive off-target lysine residues from the catalyst effective region (CER) while maintaining proximity to a target lysine residue proved crucial. Biochemical and cellular analyses of the catalytic histone acetylation revealed that each lysine acetylation elicited unique effects on the binding affinity and activity of nucleosome-interacting molecules, as well as on transcriptional programs and cellular phenotypes. These findings establish a framework for designing regioselective histone acetylation catalysts and advance our understanding of the regulatory mechanisms underlying histone PTMs.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c01699\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01699","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The “histone code,” defined by the combinatorial patterns of post-translational modifications (PTMs) on histones, plays a pivotal role in chromatin structure and gene expression. Tools for the regioselective introduction of histone PTMs in living cells are critical for dissecting the functions of these epigenetic marks. Here, we report the design and development of three regioselective catalysts that acetylate distinct lysine residues (K43, K108, and K120) on histone H2B. Using a combination of molecular dynamics simulations of catalyst-nucleosome complexes and systematic experimental optimization of catalyst structures, we identified key design principles for achieving regioselectivity. Specifically, excluding highly reactive off-target lysine residues from the catalyst effective region (CER) while maintaining proximity to a target lysine residue proved crucial. Biochemical and cellular analyses of the catalytic histone acetylation revealed that each lysine acetylation elicited unique effects on the binding affinity and activity of nucleosome-interacting molecules, as well as on transcriptional programs and cellular phenotypes. These findings establish a framework for designing regioselective histone acetylation catalysts and advance our understanding of the regulatory mechanisms underlying histone PTMs.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.