Souvik Ghosh, Ramona Birke, Ashwin Karthick Natarajan, Johannes Broichhagen
{"title":"用于自标记标签的penta - alfa标记底物允许在显微镜下增强信号","authors":"Souvik Ghosh, Ramona Birke, Ashwin Karthick Natarajan, Johannes Broichhagen","doi":"10.1002/psc.70015","DOIUrl":null,"url":null,"abstract":"<p>Self-labelling proteins like SNAP- and HaloTag have advanced imaging in life sciences by enabling live-cell labeling with fluorophore-conjugated substrates. However, the typical one-fluorophore-per-protein system limits signal intensity. To address this, we developed a strategy using the ALFA-tag system, a 13-amino acid peptide recognized by a bio-orthogonal and fluorescently labelled nanobody, for signal amplification. We synthesized a pentavalent ALFA<sub>5</sub> peptide and used an azidolysine for conjugation with a Cy5-modified SNAP- or HaloTag ligand through strain-promoted click chemistry. In vitro measurements on SDS-PAGE showed labelling, and the peptides covalently reacted with their respective tag. HEK293 cells expressing SNAP- and HaloTag-mGluR2 fusion proteins were labeled with ALFA<sub>5</sub>-Cy5 substrates, and confocal microscopy revealed a significant enhancement in the far-red signal intensity upon nanobody addition, as quantified by integrated signal density ratios. Comparisons between SNAP- and HaloTag substrates showed superior performance for the latter, achieving better signal-to-noise and signal-to-background ratios, as well as overall signal intensity in plasma membrane-localized regions. Our results demonstrate the potential of ALFA-tag-based systems to amplify SLP fluorescent signals. This strategy combines the photostability of synthetic fluorophores with multivalent labeling, providing a powerful tool for advanced imaging applications including super-resolution in cells. Its versatility is expandable across diverse protein systems and colors.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70015","citationCount":"0","resultStr":"{\"title\":\"Penta-ALFA-Tagged Substrates for Self-Labelling Tags Allow Signal Enhancement in Microscopy\",\"authors\":\"Souvik Ghosh, Ramona Birke, Ashwin Karthick Natarajan, Johannes Broichhagen\",\"doi\":\"10.1002/psc.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Self-labelling proteins like SNAP- and HaloTag have advanced imaging in life sciences by enabling live-cell labeling with fluorophore-conjugated substrates. However, the typical one-fluorophore-per-protein system limits signal intensity. To address this, we developed a strategy using the ALFA-tag system, a 13-amino acid peptide recognized by a bio-orthogonal and fluorescently labelled nanobody, for signal amplification. We synthesized a pentavalent ALFA<sub>5</sub> peptide and used an azidolysine for conjugation with a Cy5-modified SNAP- or HaloTag ligand through strain-promoted click chemistry. In vitro measurements on SDS-PAGE showed labelling, and the peptides covalently reacted with their respective tag. HEK293 cells expressing SNAP- and HaloTag-mGluR2 fusion proteins were labeled with ALFA<sub>5</sub>-Cy5 substrates, and confocal microscopy revealed a significant enhancement in the far-red signal intensity upon nanobody addition, as quantified by integrated signal density ratios. Comparisons between SNAP- and HaloTag substrates showed superior performance for the latter, achieving better signal-to-noise and signal-to-background ratios, as well as overall signal intensity in plasma membrane-localized regions. Our results demonstrate the potential of ALFA-tag-based systems to amplify SLP fluorescent signals. This strategy combines the photostability of synthetic fluorophores with multivalent labeling, providing a powerful tool for advanced imaging applications including super-resolution in cells. Its versatility is expandable across diverse protein systems and colors.</p>\",\"PeriodicalId\":16946,\"journal\":{\"name\":\"Journal of Peptide Science\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Peptide Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psc.70015\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Penta-ALFA-Tagged Substrates for Self-Labelling Tags Allow Signal Enhancement in Microscopy
Self-labelling proteins like SNAP- and HaloTag have advanced imaging in life sciences by enabling live-cell labeling with fluorophore-conjugated substrates. However, the typical one-fluorophore-per-protein system limits signal intensity. To address this, we developed a strategy using the ALFA-tag system, a 13-amino acid peptide recognized by a bio-orthogonal and fluorescently labelled nanobody, for signal amplification. We synthesized a pentavalent ALFA5 peptide and used an azidolysine for conjugation with a Cy5-modified SNAP- or HaloTag ligand through strain-promoted click chemistry. In vitro measurements on SDS-PAGE showed labelling, and the peptides covalently reacted with their respective tag. HEK293 cells expressing SNAP- and HaloTag-mGluR2 fusion proteins were labeled with ALFA5-Cy5 substrates, and confocal microscopy revealed a significant enhancement in the far-red signal intensity upon nanobody addition, as quantified by integrated signal density ratios. Comparisons between SNAP- and HaloTag substrates showed superior performance for the latter, achieving better signal-to-noise and signal-to-background ratios, as well as overall signal intensity in plasma membrane-localized regions. Our results demonstrate the potential of ALFA-tag-based systems to amplify SLP fluorescent signals. This strategy combines the photostability of synthetic fluorophores with multivalent labeling, providing a powerful tool for advanced imaging applications including super-resolution in cells. Its versatility is expandable across diverse protein systems and colors.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.