KAT3B通过介导PKM2琥珀酰化修饰促进糖酵解和肺癌恶性进展

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhifeng Guo, Yan Hui, Siqi Sun, Fanlong Kong
{"title":"KAT3B通过介导PKM2琥珀酰化修饰促进糖酵解和肺癌恶性进展","authors":"Zhifeng Guo,&nbsp;Yan Hui,&nbsp;Siqi Sun,&nbsp;Fanlong Kong","doi":"10.1002/jbt.70259","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lysine succinyltransferase KAT3B plays a critical role in the progression of various cancers by modulating key metabolic pathways, including glycolysis. However, the function and underlying mechanism of KAT3B in glycolysis and lung cancer (LC) progression remain to be further studied. We determined mRNA expression levels of lysine succinyl-modifying enzymes through qRT-PCR. Protein expression and succinylation status of glycolysis-related proteins PKM2, LDHA, and ENO1 were analyzed via Western blot. Co-immunoprecipitation and immunofluorescence microscopy were employed to verify the interaction between KAT3B and PKM2. Bioinformatics analysis predicted succinylation sites on PKM2, which were subsequently validated through site-directed mutagenesis. The effects of KAT3B and PKM2 on LC cell malignancy and glycolysis were evaluated using CCK-8, transwell migration, glucose uptake, lactate production, ECAR, and OCR assays. A xenograft tumor model was utilized to assess the impact of KAT3B on LC tumor growth. We confirmed the augmentation of KAT3B in LC, which also was correlated with advanced TNM stages and elevated T stages of LC patients. Conversely, KAT3B knockdown suppressed the growth, metastasis, and glycolytic activity of LC cells in vitro, while also inhibiting tumor growth in vivo. KAT3B mediated succinylation at PKM2 K298, and the suppression of LC cell malignancy and glycolysis upon KAT3B downregulation was largely reversed by upregulation of PKM2. The KAT3B/PKM2 axis may be a novel target for LC therapy.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 4","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KAT3B Promotes the Glycolysis and Malignant Progression of Lung Cancer by Mediating the Succinylation Modification of PKM2\",\"authors\":\"Zhifeng Guo,&nbsp;Yan Hui,&nbsp;Siqi Sun,&nbsp;Fanlong Kong\",\"doi\":\"10.1002/jbt.70259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Lysine succinyltransferase KAT3B plays a critical role in the progression of various cancers by modulating key metabolic pathways, including glycolysis. However, the function and underlying mechanism of KAT3B in glycolysis and lung cancer (LC) progression remain to be further studied. We determined mRNA expression levels of lysine succinyl-modifying enzymes through qRT-PCR. Protein expression and succinylation status of glycolysis-related proteins PKM2, LDHA, and ENO1 were analyzed via Western blot. Co-immunoprecipitation and immunofluorescence microscopy were employed to verify the interaction between KAT3B and PKM2. Bioinformatics analysis predicted succinylation sites on PKM2, which were subsequently validated through site-directed mutagenesis. The effects of KAT3B and PKM2 on LC cell malignancy and glycolysis were evaluated using CCK-8, transwell migration, glucose uptake, lactate production, ECAR, and OCR assays. A xenograft tumor model was utilized to assess the impact of KAT3B on LC tumor growth. We confirmed the augmentation of KAT3B in LC, which also was correlated with advanced TNM stages and elevated T stages of LC patients. Conversely, KAT3B knockdown suppressed the growth, metastasis, and glycolytic activity of LC cells in vitro, while also inhibiting tumor growth in vivo. KAT3B mediated succinylation at PKM2 K298, and the suppression of LC cell malignancy and glycolysis upon KAT3B downregulation was largely reversed by upregulation of PKM2. The KAT3B/PKM2 axis may be a novel target for LC therapy.</p></div>\",\"PeriodicalId\":15151,\"journal\":{\"name\":\"Journal of Biochemical and Molecular Toxicology\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biochemical and Molecular Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70259\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70259","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

赖氨酸琥珀酰转移酶KAT3B通过调节包括糖酵解在内的关键代谢途径,在各种癌症的进展中发挥关键作用。然而,KAT3B在糖酵解和肺癌(LC)进展中的功能和潜在机制仍有待进一步研究。我们通过qRT-PCR检测了赖氨酸琥珀酰修饰酶的mRNA表达水平。Western blot分析糖酵解相关蛋白PKM2、LDHA和ENO1的蛋白表达和琥珀酰化状态。采用免疫共沉淀法和免疫荧光显微镜验证KAT3B与PKM2的相互作用。生物信息学分析预测PKM2上的琥珀酰化位点,随后通过定点诱变验证。通过CCK-8、跨井迁移、葡萄糖摄取、乳酸生成、ECAR和OCR检测评估KAT3B和PKM2对LC细胞恶性肿瘤和糖酵解的影响。采用异种移植肿瘤模型评估KAT3B对LC肿瘤生长的影响。我们证实了LC中KAT3B的增加,这也与LC患者TNM晚期和T分期升高有关。相反,KAT3B敲低在体外抑制LC细胞的生长、转移和糖酵解活性,同时在体内抑制肿瘤生长。KAT3B介导PKM2 K298位点的琥珀酰化,KAT3B下调对LC细胞恶性肿瘤和糖酵解的抑制在很大程度上被PKM2上调逆转。KAT3B/PKM2轴可能是LC治疗的新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

KAT3B Promotes the Glycolysis and Malignant Progression of Lung Cancer by Mediating the Succinylation Modification of PKM2

KAT3B Promotes the Glycolysis and Malignant Progression of Lung Cancer by Mediating the Succinylation Modification of PKM2

Lysine succinyltransferase KAT3B plays a critical role in the progression of various cancers by modulating key metabolic pathways, including glycolysis. However, the function and underlying mechanism of KAT3B in glycolysis and lung cancer (LC) progression remain to be further studied. We determined mRNA expression levels of lysine succinyl-modifying enzymes through qRT-PCR. Protein expression and succinylation status of glycolysis-related proteins PKM2, LDHA, and ENO1 were analyzed via Western blot. Co-immunoprecipitation and immunofluorescence microscopy were employed to verify the interaction between KAT3B and PKM2. Bioinformatics analysis predicted succinylation sites on PKM2, which were subsequently validated through site-directed mutagenesis. The effects of KAT3B and PKM2 on LC cell malignancy and glycolysis were evaluated using CCK-8, transwell migration, glucose uptake, lactate production, ECAR, and OCR assays. A xenograft tumor model was utilized to assess the impact of KAT3B on LC tumor growth. We confirmed the augmentation of KAT3B in LC, which also was correlated with advanced TNM stages and elevated T stages of LC patients. Conversely, KAT3B knockdown suppressed the growth, metastasis, and glycolytic activity of LC cells in vitro, while also inhibiting tumor growth in vivo. KAT3B mediated succinylation at PKM2 K298, and the suppression of LC cell malignancy and glycolysis upon KAT3B downregulation was largely reversed by upregulation of PKM2. The KAT3B/PKM2 axis may be a novel target for LC therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信