{"title":"MGMP:基于多粒度语义关系学习和元路径结构交互学习的假新闻检测","authors":"Baozhen Lee, Dandan Cao, Tingting Zhang","doi":"10.1007/s10489-025-06560-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes the joint learning model <u>M</u>ulti-<u>G</u>ranularity Semantic Relation Learning and <u>M</u>eta-<u>P</u>ath Structure Interaction Learning for fake news detection (MGMP). The MGMP improves global semantic relation learning through a multi-granularity process involving coarse-grained and fine-grained learning modules, along with meta-path based global interaction learning. It begins by refining global semantic recognition accuracy at the word-level and document-level through attention mechanisms and convolutional neural networks. Furthermore, it enhances global interaction learning by enhancing meta-path instance representations with various meta-paths and employing multi-head self-attention mechanisms within the network structure. Experimental findings on real datasets confirm the effectiveness of the MGMP in fake news detection by enhancing global semantic recognition accuracy in news nodes and recognizing network structural characteristics.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MGMP: Multi-granularity semantic relation learning and meta-path structure interaction learning for fake news detection\",\"authors\":\"Baozhen Lee, Dandan Cao, Tingting Zhang\",\"doi\":\"10.1007/s10489-025-06560-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes the joint learning model <u>M</u>ulti-<u>G</u>ranularity Semantic Relation Learning and <u>M</u>eta-<u>P</u>ath Structure Interaction Learning for fake news detection (MGMP). The MGMP improves global semantic relation learning through a multi-granularity process involving coarse-grained and fine-grained learning modules, along with meta-path based global interaction learning. It begins by refining global semantic recognition accuracy at the word-level and document-level through attention mechanisms and convolutional neural networks. Furthermore, it enhances global interaction learning by enhancing meta-path instance representations with various meta-paths and employing multi-head self-attention mechanisms within the network structure. Experimental findings on real datasets confirm the effectiveness of the MGMP in fake news detection by enhancing global semantic recognition accuracy in news nodes and recognizing network structural characteristics.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 7\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06560-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06560-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MGMP: Multi-granularity semantic relation learning and meta-path structure interaction learning for fake news detection
This paper proposes the joint learning model Multi-Granularity Semantic Relation Learning and Meta-Path Structure Interaction Learning for fake news detection (MGMP). The MGMP improves global semantic relation learning through a multi-granularity process involving coarse-grained and fine-grained learning modules, along with meta-path based global interaction learning. It begins by refining global semantic recognition accuracy at the word-level and document-level through attention mechanisms and convolutional neural networks. Furthermore, it enhances global interaction learning by enhancing meta-path instance representations with various meta-paths and employing multi-head self-attention mechanisms within the network structure. Experimental findings on real datasets confirm the effectiveness of the MGMP in fake news detection by enhancing global semantic recognition accuracy in news nodes and recognizing network structural characteristics.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.