基于GNSS-R反射率时间序列的冻融状态检测算法

Jiaxing He;Nanshan Zheng;Rui Ding;Xuexi Liu;Jiawei Wang
{"title":"基于GNSS-R反射率时间序列的冻融状态检测算法","authors":"Jiaxing He;Nanshan Zheng;Rui Ding;Xuexi Liu;Jiawei Wang","doi":"10.1109/LGRS.2025.3557195","DOIUrl":null,"url":null,"abstract":"The detection of soil freeze-thaw (F/T) states is crucial for understanding surface hydrological processes, carbon cycle dynamics, and their climatic implications. Recent advancements in spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) have demonstrated significant potential for soil state classification. Surface reflectivity, derived from GNSS-R measurements, is a key parameter for distinguishing between frozen and thawed soil conditions. This study implements an edge detection algorithm to analyze reflectivity time series obtained from Cyclone Global Navigation Satellite System (CYGNSS) observations, enabling the estimation of soil F/T transition onset dates. The algorithm’s performance was validated by comparing the results with ERA5_Land surface temperature data, showing a mean absolute deviation (MAD) of 20.2 days in seasonal transition date estimates and achieving an overall detection accuracy of 88.95%. These validation results indicate strong consistency between the predicted and reference data, showing the algorithm’s efficacy in determining soil-state transitions. This work contributes to the advancement of soil F/T mapping techniques and enhances our understanding of seasonal soil-state dynamics.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Algorithm for Freeze/Thaw State Detection Using GNSS-R Reflectivity Time Series\",\"authors\":\"Jiaxing He;Nanshan Zheng;Rui Ding;Xuexi Liu;Jiawei Wang\",\"doi\":\"10.1109/LGRS.2025.3557195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of soil freeze-thaw (F/T) states is crucial for understanding surface hydrological processes, carbon cycle dynamics, and their climatic implications. Recent advancements in spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) have demonstrated significant potential for soil state classification. Surface reflectivity, derived from GNSS-R measurements, is a key parameter for distinguishing between frozen and thawed soil conditions. This study implements an edge detection algorithm to analyze reflectivity time series obtained from Cyclone Global Navigation Satellite System (CYGNSS) observations, enabling the estimation of soil F/T transition onset dates. The algorithm’s performance was validated by comparing the results with ERA5_Land surface temperature data, showing a mean absolute deviation (MAD) of 20.2 days in seasonal transition date estimates and achieving an overall detection accuracy of 88.95%. These validation results indicate strong consistency between the predicted and reference data, showing the algorithm’s efficacy in determining soil-state transitions. This work contributes to the advancement of soil F/T mapping techniques and enhances our understanding of seasonal soil-state dynamics.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10947556/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10947556/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土壤冻融(F/T)状态的检测对于理解地表水文过程、碳循环动力学及其气候影响至关重要。星载全球导航卫星系统反射测量(GNSS-R)的最新进展显示了土壤状态分类的巨大潜力。来自GNSS-R测量的表面反射率是区分冻土和解冻土壤状况的关键参数。本研究实现了一种边缘检测算法,用于分析气旋全球导航卫星系统(CYGNSS)观测数据获得的反射率时间序列,从而估算土壤F/T转变开始日期。通过与ERA5_Land地表温度数据的比较,验证了该算法的性能,季节转换日期估计的平均绝对偏差(MAD)为20.2 d,总体检测精度为88.95%。这些验证结果表明,预测和参考数据之间具有很强的一致性,表明该算法在确定土壤状态转变方面的有效性。这项工作有助于土壤F/T制图技术的发展,增强我们对季节性土壤状态动态的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Algorithm for Freeze/Thaw State Detection Using GNSS-R Reflectivity Time Series
The detection of soil freeze-thaw (F/T) states is crucial for understanding surface hydrological processes, carbon cycle dynamics, and their climatic implications. Recent advancements in spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) have demonstrated significant potential for soil state classification. Surface reflectivity, derived from GNSS-R measurements, is a key parameter for distinguishing between frozen and thawed soil conditions. This study implements an edge detection algorithm to analyze reflectivity time series obtained from Cyclone Global Navigation Satellite System (CYGNSS) observations, enabling the estimation of soil F/T transition onset dates. The algorithm’s performance was validated by comparing the results with ERA5_Land surface temperature data, showing a mean absolute deviation (MAD) of 20.2 days in seasonal transition date estimates and achieving an overall detection accuracy of 88.95%. These validation results indicate strong consistency between the predicted and reference data, showing the algorithm’s efficacy in determining soil-state transitions. This work contributes to the advancement of soil F/T mapping techniques and enhances our understanding of seasonal soil-state dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信