{"title":"重新审视片断光滑曲线之间的弗雷谢特距离","authors":"Jacobus Conradi , Anne Driemel , Benedikt Kolbe","doi":"10.1016/j.comgeo.2025.102194","DOIUrl":null,"url":null,"abstract":"<div><div>Since its introduction to computational geometry by Alt and Godau in 1992, the Fréchet distance has been a mainstay of algorithmic research on curve similarity computations. The focus of the research has been on comparing polygonal curves, with the notable exception of an algorithm for the decision problem for planar piecewise smooth curves due to Rote (2007). We present an algorithm for the decision problem for piecewise smooth curves that is both conceptually simpler and naturally extends to the first algorithm for the problem for piecewise smooth curves in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>.</div><div>We assume that the algorithm is given two continuous curves, each consisting of a sequence of <em>m</em>, resp. <em>n</em>, smooth pieces, where each piece belongs to a sufficiently well-behaved class of curves, such as the set of algebraic curves of bounded degree. We introduce a decomposition of the free space diagram into a controlled number of pieces that can be used to solve the decision problem similarly to the polygonal case, in <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><mo>)</mo></math></span> time, leading to a computation of the Fréchet distance that runs in <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><mi>log</mi><mo></mo><mo>(</mo><mi>m</mi><mi>n</mi><mo>)</mo><mo>)</mo></math></span> time.</div><div>Furthermore, we study approximation algorithms for piecewise smooth curves that are also <em>c</em>-packed for some fixed value <em>c</em>. We adapt the existing framework for polygonal curves that leads to a near-linear <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation to the Fréchet distance to the setting of piecewise smooth curves.</div></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":"129 ","pages":"Article 102194"},"PeriodicalIF":0.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Fréchet distance between piecewise smooth curves\",\"authors\":\"Jacobus Conradi , Anne Driemel , Benedikt Kolbe\",\"doi\":\"10.1016/j.comgeo.2025.102194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Since its introduction to computational geometry by Alt and Godau in 1992, the Fréchet distance has been a mainstay of algorithmic research on curve similarity computations. The focus of the research has been on comparing polygonal curves, with the notable exception of an algorithm for the decision problem for planar piecewise smooth curves due to Rote (2007). We present an algorithm for the decision problem for piecewise smooth curves that is both conceptually simpler and naturally extends to the first algorithm for the problem for piecewise smooth curves in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>.</div><div>We assume that the algorithm is given two continuous curves, each consisting of a sequence of <em>m</em>, resp. <em>n</em>, smooth pieces, where each piece belongs to a sufficiently well-behaved class of curves, such as the set of algebraic curves of bounded degree. We introduce a decomposition of the free space diagram into a controlled number of pieces that can be used to solve the decision problem similarly to the polygonal case, in <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><mo>)</mo></math></span> time, leading to a computation of the Fréchet distance that runs in <span><math><mi>O</mi><mo>(</mo><mi>m</mi><mi>n</mi><mi>log</mi><mo></mo><mo>(</mo><mi>m</mi><mi>n</mi><mo>)</mo><mo>)</mo></math></span> time.</div><div>Furthermore, we study approximation algorithms for piecewise smooth curves that are also <em>c</em>-packed for some fixed value <em>c</em>. We adapt the existing framework for polygonal curves that leads to a near-linear <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo></math></span>-approximation to the Fréchet distance to the setting of piecewise smooth curves.</div></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":\"129 \",\"pages\":\"Article 102194\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092577212500032X\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092577212500032X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Revisiting the Fréchet distance between piecewise smooth curves
Since its introduction to computational geometry by Alt and Godau in 1992, the Fréchet distance has been a mainstay of algorithmic research on curve similarity computations. The focus of the research has been on comparing polygonal curves, with the notable exception of an algorithm for the decision problem for planar piecewise smooth curves due to Rote (2007). We present an algorithm for the decision problem for piecewise smooth curves that is both conceptually simpler and naturally extends to the first algorithm for the problem for piecewise smooth curves in .
We assume that the algorithm is given two continuous curves, each consisting of a sequence of m, resp. n, smooth pieces, where each piece belongs to a sufficiently well-behaved class of curves, such as the set of algebraic curves of bounded degree. We introduce a decomposition of the free space diagram into a controlled number of pieces that can be used to solve the decision problem similarly to the polygonal case, in time, leading to a computation of the Fréchet distance that runs in time.
Furthermore, we study approximation algorithms for piecewise smooth curves that are also c-packed for some fixed value c. We adapt the existing framework for polygonal curves that leads to a near-linear -approximation to the Fréchet distance to the setting of piecewise smooth curves.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.