{"title":"罗宾逊空间中的模块和 PQ 树","authors":"M. Carmona , V. Chepoi , G. Naves , P. Préa","doi":"10.1016/j.ic.2025.105300","DOIUrl":null,"url":null,"abstract":"<div><div>A Robinson space is a dissimilarity space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> on <em>n</em> points for which there exists a compatible order, <em>i.e.</em> a total order < on <em>X</em> such that <span><math><mi>x</mi><mo><</mo><mi>y</mi><mo><</mo><mi>z</mi></math></span> implies that <span><math><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>(</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo>)</mo></math></span>. Recognizing whether a dissimilarity space is Robinson has numerous applications in seriation and classification. The set of all compatible orders of a Robinson space can be succintly represented by a PQ-tree, a classical data structure introduced by Booth and Lueker. An mmodule is a subset <em>M</em> of <em>X</em> which is not distinguishable from the outside of <em>M</em>, <em>i.e.</em> the distances from any point of <span><math><mi>X</mi><mo>∖</mo><mi>M</mi></math></span> to all points of <em>M</em> are the same. The hierarchical structure of mmodules can also be represented by a tree: the mmodule-tree of a dissimilarity space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span>.</div><div>In this paper, we establish correspondences between the PQ-trees and the mmodule-trees of Robinson spaces. More precisely, we show how to construct the mmodule-tree of a Robinson dissimilarity from its PQ-tree and <em>vice versa</em>. To establish this translation, we introduce the notions of <em>δ</em>-graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mover><mrow><mi>δ</mi></mrow><mo>‾</mo></mover></mrow></msub></math></span> of a Robinson space and of <em>δ</em>-mmodules, the connected components of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mover><mrow><mi>δ</mi></mrow><mo>‾</mo></mover></mrow></msub></math></span>. It also involves the dendrogram of the subdominant ultrametric of <em>d</em>. All these results also lead to optimal <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time algorithms for constructing the PQ-tree and the mmodule tree of Robinson spaces.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"304 ","pages":"Article 105300"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modules and PQ-trees in Robinson spaces\",\"authors\":\"M. Carmona , V. Chepoi , G. Naves , P. Préa\",\"doi\":\"10.1016/j.ic.2025.105300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A Robinson space is a dissimilarity space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span> on <em>n</em> points for which there exists a compatible order, <em>i.e.</em> a total order < on <em>X</em> such that <span><math><mi>x</mi><mo><</mo><mi>y</mi><mo><</mo><mi>z</mi></math></span> implies that <span><math><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo>)</mo></math></span> and <span><math><mi>d</mi><mo>(</mo><mi>y</mi><mo>,</mo><mi>z</mi><mo>)</mo><mo>≤</mo><mi>d</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>z</mi><mo>)</mo></math></span>. Recognizing whether a dissimilarity space is Robinson has numerous applications in seriation and classification. The set of all compatible orders of a Robinson space can be succintly represented by a PQ-tree, a classical data structure introduced by Booth and Lueker. An mmodule is a subset <em>M</em> of <em>X</em> which is not distinguishable from the outside of <em>M</em>, <em>i.e.</em> the distances from any point of <span><math><mi>X</mi><mo>∖</mo><mi>M</mi></math></span> to all points of <em>M</em> are the same. The hierarchical structure of mmodules can also be represented by a tree: the mmodule-tree of a dissimilarity space <span><math><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>)</mo></math></span>.</div><div>In this paper, we establish correspondences between the PQ-trees and the mmodule-trees of Robinson spaces. More precisely, we show how to construct the mmodule-tree of a Robinson dissimilarity from its PQ-tree and <em>vice versa</em>. To establish this translation, we introduce the notions of <em>δ</em>-graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mover><mrow><mi>δ</mi></mrow><mo>‾</mo></mover></mrow></msub></math></span> of a Robinson space and of <em>δ</em>-mmodules, the connected components of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mover><mrow><mi>δ</mi></mrow><mo>‾</mo></mover></mrow></msub></math></span>. It also involves the dendrogram of the subdominant ultrametric of <em>d</em>. All these results also lead to optimal <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> time algorithms for constructing the PQ-tree and the mmodule tree of Robinson spaces.</div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"304 \",\"pages\":\"Article 105300\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540125000367\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540125000367","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A Robinson space is a dissimilarity space on n points for which there exists a compatible order, i.e. a total order < on X such that implies that and . Recognizing whether a dissimilarity space is Robinson has numerous applications in seriation and classification. The set of all compatible orders of a Robinson space can be succintly represented by a PQ-tree, a classical data structure introduced by Booth and Lueker. An mmodule is a subset M of X which is not distinguishable from the outside of M, i.e. the distances from any point of to all points of M are the same. The hierarchical structure of mmodules can also be represented by a tree: the mmodule-tree of a dissimilarity space .
In this paper, we establish correspondences between the PQ-trees and the mmodule-trees of Robinson spaces. More precisely, we show how to construct the mmodule-tree of a Robinson dissimilarity from its PQ-tree and vice versa. To establish this translation, we introduce the notions of δ-graph of a Robinson space and of δ-mmodules, the connected components of . It also involves the dendrogram of the subdominant ultrametric of d. All these results also lead to optimal time algorithms for constructing the PQ-tree and the mmodule tree of Robinson spaces.
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking