利用实物期权法进行多期投资组合优化的数据驱动预测方法

IF 6.9 2区 经济学 Q1 BUSINESS, FINANCE
Abdollah Arasteh
{"title":"利用实物期权法进行多期投资组合优化的数据驱动预测方法","authors":"Abdollah Arasteh","doi":"10.1016/j.frl.2025.107403","DOIUrl":null,"url":null,"abstract":"<div><div>Financial portfolio optimization balances risk and returns. Traditional multi-period models ignore financial time series dynamics and volatility by assuming normally distributed returns and static predictions. Many models ignore unequal estimation penalties, making them difficult. Different distribution models and uncertainty management in finance are sought to fill this gap. We test t-distributions and kernel estimators and add probabilistic risk criteria to the multi-period capital portfolio selection algorithm. Real options manage uncertainty in complex environments and provide accurate forecasts with strong decision-making tools despite volatile financial data. Modern theory applied to empirical applications improves dynamic financial system portfolio optimization and adaptive approaches.</div></div>","PeriodicalId":12167,"journal":{"name":"Finance Research Letters","volume":"80 ","pages":"Article 107403"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A data-driven prediction method for multi-period portfolio optimization using the real options approach\",\"authors\":\"Abdollah Arasteh\",\"doi\":\"10.1016/j.frl.2025.107403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Financial portfolio optimization balances risk and returns. Traditional multi-period models ignore financial time series dynamics and volatility by assuming normally distributed returns and static predictions. Many models ignore unequal estimation penalties, making them difficult. Different distribution models and uncertainty management in finance are sought to fill this gap. We test t-distributions and kernel estimators and add probabilistic risk criteria to the multi-period capital portfolio selection algorithm. Real options manage uncertainty in complex environments and provide accurate forecasts with strong decision-making tools despite volatile financial data. Modern theory applied to empirical applications improves dynamic financial system portfolio optimization and adaptive approaches.</div></div>\",\"PeriodicalId\":12167,\"journal\":{\"name\":\"Finance Research Letters\",\"volume\":\"80 \",\"pages\":\"Article 107403\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance Research Letters\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1544612325006634\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance Research Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1544612325006634","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

金融投资组合优化兼顾风险与收益。传统的多期模型假设收益呈正态分布并进行静态预测,从而忽略了金融时间序列的动态性和波动性。许多模型忽略了不平等的估计惩罚,导致模型难以建立。人们试图用不同的分布模型和金融中的不确定性管理来填补这一空白。我们测试了 t 分布和核估计器,并为多期资本组合选择算法添加了概率风险标准。实物期权可以管理复杂环境中的不确定性,并在金融数据不稳定的情况下提供准确的预测和强有力的决策工具。将现代理论应用于经验应用,可以改进动态金融系统的投资组合优化和自适应方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A data-driven prediction method for multi-period portfolio optimization using the real options approach
Financial portfolio optimization balances risk and returns. Traditional multi-period models ignore financial time series dynamics and volatility by assuming normally distributed returns and static predictions. Many models ignore unequal estimation penalties, making them difficult. Different distribution models and uncertainty management in finance are sought to fill this gap. We test t-distributions and kernel estimators and add probabilistic risk criteria to the multi-period capital portfolio selection algorithm. Real options manage uncertainty in complex environments and provide accurate forecasts with strong decision-making tools despite volatile financial data. Modern theory applied to empirical applications improves dynamic financial system portfolio optimization and adaptive approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance Research Letters
Finance Research Letters BUSINESS, FINANCE-
CiteScore
11.10
自引率
14.40%
发文量
863
期刊介绍: Finance Research Letters welcomes submissions across all areas of finance, aiming for rapid publication of significant new findings. The journal particularly encourages papers that provide insight into the replicability of established results, examine the cross-national applicability of previous findings, challenge existing methodologies, or demonstrate methodological contingencies. Papers are invited in the following areas: Actuarial studies Alternative investments Asset Pricing Bankruptcy and liquidation Banks and other Depository Institutions Behavioral and experimental finance Bibliometric and Scientometric studies of finance Capital budgeting and corporate investment Capital markets and accounting Capital structure and payout policy Commodities Contagion, crises and interdependence Corporate governance Credit and fixed income markets and instruments Derivatives Emerging markets Energy Finance and Energy Markets Financial Econometrics Financial History Financial intermediation and money markets Financial markets and marketplaces Financial Mathematics and Econophysics Financial Regulation and Law Forecasting Frontier market studies International Finance Market efficiency, event studies Mergers, acquisitions and the market for corporate control Micro Finance Institutions Microstructure Non-bank Financial Institutions Personal Finance Portfolio choice and investing Real estate finance and investing Risk SME, Family and Entrepreneurial Finance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信