{"title":"基于改进的二元salp群算法和堆叠分类器的启发式特征选择优化了心脏病预测模型","authors":"M. Sowmiya , B. Banu Rekha , E. Malar","doi":"10.1016/j.compbiomed.2025.110171","DOIUrl":null,"url":null,"abstract":"<div><div>Despite technological advancements, heart disease continues to be a major global health challenge, emphasizing the importance of developing accurate predictive models for early detection and timely intervention. This study proposes a heart disease prediction model integrating a stacking classifier with a nature-inspired meta-heuristic algorithm. It employs an improved Binary Salp Swarm Algorithm (BSSA) by incorporating a wolf optimizer and opposition-based learning for optimal feature selection. The proposed Stacking Classifier (SC) architecture features a two-tier ensemble: heterogeneous base classifiers at level 0 and a meta-learner at level 1. The BSSA is used to identify optimal features, which are then utilized to construct the stacking classifier. Experimental results demonstrate superior performance, achieving 95 % accuracy, 0.92 sensitivity, 0.97 specificity, 0.96 precision, and an F1 score of 0.95, with notably low false positive and false negative rates. Further, validation on larger datasets yielded an accuracy of 87.46 %. The feature selection process adopts a multi-objective strategy which enhances the classification accuracy and outperforms conventional techniques. The proposed method demonstrates significant potential for improving the predictive modelling in clinical settings for diagnosing heart diseases.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":"Article 110171"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized heart disease prediction model using a meta-heuristic feature selection with improved binary salp swarm algorithm and stacking classifier\",\"authors\":\"M. Sowmiya , B. Banu Rekha , E. Malar\",\"doi\":\"10.1016/j.compbiomed.2025.110171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite technological advancements, heart disease continues to be a major global health challenge, emphasizing the importance of developing accurate predictive models for early detection and timely intervention. This study proposes a heart disease prediction model integrating a stacking classifier with a nature-inspired meta-heuristic algorithm. It employs an improved Binary Salp Swarm Algorithm (BSSA) by incorporating a wolf optimizer and opposition-based learning for optimal feature selection. The proposed Stacking Classifier (SC) architecture features a two-tier ensemble: heterogeneous base classifiers at level 0 and a meta-learner at level 1. The BSSA is used to identify optimal features, which are then utilized to construct the stacking classifier. Experimental results demonstrate superior performance, achieving 95 % accuracy, 0.92 sensitivity, 0.97 specificity, 0.96 precision, and an F1 score of 0.95, with notably low false positive and false negative rates. Further, validation on larger datasets yielded an accuracy of 87.46 %. The feature selection process adopts a multi-objective strategy which enhances the classification accuracy and outperforms conventional techniques. The proposed method demonstrates significant potential for improving the predictive modelling in clinical settings for diagnosing heart diseases.</div></div>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"191 \",\"pages\":\"Article 110171\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010482525005220\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005220","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Optimized heart disease prediction model using a meta-heuristic feature selection with improved binary salp swarm algorithm and stacking classifier
Despite technological advancements, heart disease continues to be a major global health challenge, emphasizing the importance of developing accurate predictive models for early detection and timely intervention. This study proposes a heart disease prediction model integrating a stacking classifier with a nature-inspired meta-heuristic algorithm. It employs an improved Binary Salp Swarm Algorithm (BSSA) by incorporating a wolf optimizer and opposition-based learning for optimal feature selection. The proposed Stacking Classifier (SC) architecture features a two-tier ensemble: heterogeneous base classifiers at level 0 and a meta-learner at level 1. The BSSA is used to identify optimal features, which are then utilized to construct the stacking classifier. Experimental results demonstrate superior performance, achieving 95 % accuracy, 0.92 sensitivity, 0.97 specificity, 0.96 precision, and an F1 score of 0.95, with notably low false positive and false negative rates. Further, validation on larger datasets yielded an accuracy of 87.46 %. The feature selection process adopts a multi-objective strategy which enhances the classification accuracy and outperforms conventional techniques. The proposed method demonstrates significant potential for improving the predictive modelling in clinical settings for diagnosing heart diseases.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.