火焰喷雾热解制备尺寸可调的铌掺杂氧化锡纳米颗粒以改善pefc催化剂的性能

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Thi Thanh Nguyen Ho, Tomoyuki Hirano*, Ryosuke Narui, Shota Imaoka, Aoi Takano, Syu Miyasaka, Eishi Tanabe, Eka Lutfi Septiani, Kiet Le Anh Cao and Takashi Ogi*, 
{"title":"火焰喷雾热解制备尺寸可调的铌掺杂氧化锡纳米颗粒以改善pefc催化剂的性能","authors":"Thi Thanh Nguyen Ho,&nbsp;Tomoyuki Hirano*,&nbsp;Ryosuke Narui,&nbsp;Shota Imaoka,&nbsp;Aoi Takano,&nbsp;Syu Miyasaka,&nbsp;Eishi Tanabe,&nbsp;Eka Lutfi Septiani,&nbsp;Kiet Le Anh Cao and Takashi Ogi*,&nbsp;","doi":"10.1021/acsaem.5c0026610.1021/acsaem.5c00266","DOIUrl":null,"url":null,"abstract":"<p >Niobium-doped tin oxide (NTO) nanoparticles with a network structure, synthesized via flame aerosol technology, have attracted significant attention as catalyst supports in polymer electrolyte fuel cells due to their high durability and excellent cell performance. Here, we successfully synthesized NTO nanoparticles of varying sizes using spray flame techniques and systematically investigated the effects of solvent type, precursor concentration, feed rate, and oxygen dispersion gas flow rate on the crystallite size and particle size distribution of NTO nanoparticles. Increasing the mass input into the flame, through either higher precursor concentrations or higher feed rates, led to the formation of larger nanoparticles. We achieved the successful synthesis of NTO nanoparticles with controllable sizes in the range of 5 to 33 nm. The electrochemical surface area (ECSA) of Pt-loaded NTO particles with a 5 nm NTO size was 34.4 m<sup>2</sup>/g<sub>–Pt</sub>, with Pt nanoparticles uniformly distributed across the NTO surface. The Pt/NTO sample with NTO nanoparticles of 17 nm exhibited high specific activity (<i>j</i><sup>spec</sup><sub>0.9 V</sub>) and mass activity (<i>j</i><sup>mass</sup><sub>0.9 V</sub>) at a potential of 0.9 V, with <i>j</i><sup>spec</sup><sub>0.9 V</sub> and <i>j</i><sup>mass</sup><sub>0.9 V</sub> values of 633 μA/cm<sup>2</sup> and 159 A/g, respectively.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4640–4647 4640–4647"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flame Spray Pyrolysis Achieves Size-Tunable Niobium-doped Tin Oxide Nanoparticles for Improved Catalyst Performance in PEFCs\",\"authors\":\"Thi Thanh Nguyen Ho,&nbsp;Tomoyuki Hirano*,&nbsp;Ryosuke Narui,&nbsp;Shota Imaoka,&nbsp;Aoi Takano,&nbsp;Syu Miyasaka,&nbsp;Eishi Tanabe,&nbsp;Eka Lutfi Septiani,&nbsp;Kiet Le Anh Cao and Takashi Ogi*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c0026610.1021/acsaem.5c00266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Niobium-doped tin oxide (NTO) nanoparticles with a network structure, synthesized via flame aerosol technology, have attracted significant attention as catalyst supports in polymer electrolyte fuel cells due to their high durability and excellent cell performance. Here, we successfully synthesized NTO nanoparticles of varying sizes using spray flame techniques and systematically investigated the effects of solvent type, precursor concentration, feed rate, and oxygen dispersion gas flow rate on the crystallite size and particle size distribution of NTO nanoparticles. Increasing the mass input into the flame, through either higher precursor concentrations or higher feed rates, led to the formation of larger nanoparticles. We achieved the successful synthesis of NTO nanoparticles with controllable sizes in the range of 5 to 33 nm. The electrochemical surface area (ECSA) of Pt-loaded NTO particles with a 5 nm NTO size was 34.4 m<sup>2</sup>/g<sub>–Pt</sub>, with Pt nanoparticles uniformly distributed across the NTO surface. The Pt/NTO sample with NTO nanoparticles of 17 nm exhibited high specific activity (<i>j</i><sup>spec</sup><sub>0.9 V</sub>) and mass activity (<i>j</i><sup>mass</sup><sub>0.9 V</sub>) at a potential of 0.9 V, with <i>j</i><sup>spec</sup><sub>0.9 V</sub> and <i>j</i><sup>mass</sup><sub>0.9 V</sub> values of 633 μA/cm<sup>2</sup> and 159 A/g, respectively.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 7\",\"pages\":\"4640–4647 4640–4647\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c00266\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00266","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过火焰气溶胶技术合成的具有网状结构的掺铌氧化锡纳米颗粒,由于其高耐久性和优异的电池性能,在聚合物电解质燃料电池中作为催化剂载体受到了广泛关注。本文采用喷雾火焰技术成功合成了不同粒径的NTO纳米颗粒,并系统地研究了溶剂类型、前驱体浓度、进料速率和氧分散气体流速对NTO纳米颗粒晶粒尺寸和粒径分布的影响。通过更高的前驱体浓度或更高的进料速率,增加火焰的质量输入,导致更大的纳米颗粒的形成。我们成功合成了尺寸在5 ~ 33 nm范围内可控的NTO纳米颗粒。粒径为5 nm的负载Pt的NTO颗粒的电化学比表面积(ECSA)为34.4 m2/ g-Pt, Pt纳米颗粒均匀分布在NTO表面。NTO纳米颗粒为17 nm的Pt/NTO样品在0.9 V电位下具有较高的比活性(jspec0.9 V)和质量活性(jmass0.9 V), jspec0.9 V和jmass0.9 V分别为633 μA/cm2和159 a /g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Flame Spray Pyrolysis Achieves Size-Tunable Niobium-doped Tin Oxide Nanoparticles for Improved Catalyst Performance in PEFCs

Flame Spray Pyrolysis Achieves Size-Tunable Niobium-doped Tin Oxide Nanoparticles for Improved Catalyst Performance in PEFCs

Niobium-doped tin oxide (NTO) nanoparticles with a network structure, synthesized via flame aerosol technology, have attracted significant attention as catalyst supports in polymer electrolyte fuel cells due to their high durability and excellent cell performance. Here, we successfully synthesized NTO nanoparticles of varying sizes using spray flame techniques and systematically investigated the effects of solvent type, precursor concentration, feed rate, and oxygen dispersion gas flow rate on the crystallite size and particle size distribution of NTO nanoparticles. Increasing the mass input into the flame, through either higher precursor concentrations or higher feed rates, led to the formation of larger nanoparticles. We achieved the successful synthesis of NTO nanoparticles with controllable sizes in the range of 5 to 33 nm. The electrochemical surface area (ECSA) of Pt-loaded NTO particles with a 5 nm NTO size was 34.4 m2/g–Pt, with Pt nanoparticles uniformly distributed across the NTO surface. The Pt/NTO sample with NTO nanoparticles of 17 nm exhibited high specific activity (jspec0.9 V) and mass activity (jmass0.9 V) at a potential of 0.9 V, with jspec0.9 V and jmass0.9 V values of 633 μA/cm2 and 159 A/g, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信