Orathai Kaewkham, Duangkamol Gleeson*, Poowadon Fukasem, Jirapat Santatiwongchai, Donald J. L. Jones, Robert G. Britton and M. Paul Gleeson*,
{"title":"探讨蛋白和抑制剂构象柔韧性对表皮生长因子受体罗塞利替尼样共价抑制剂反应的影响。量子力学/分子力学研究","authors":"Orathai Kaewkham, Duangkamol Gleeson*, Poowadon Fukasem, Jirapat Santatiwongchai, Donald J. L. Jones, Robert G. Britton and M. Paul Gleeson*, ","doi":"10.1021/acs.jcim.4c0198510.1021/acs.jcim.4c01985","DOIUrl":null,"url":null,"abstract":"<p >Epidermal growth factor receptor (EGFR) is a tyrosine kinase and a validated target for non-small cell lung cancer (NSCLC). Drug discovery efforts on this target initially focused on traditional competitive, reversible ATP-binding site inhibitors; however, irreversible covalent binding EGFR inhibitors have become increasingly more popular. Covalent EGFR inhibitors have been developed using a range of different scaffolds, and unsurprisingly, the incorporation of an electrophilic acrylamide group can result in sizable orientation differences relative to the Cys797 nucleophile and the Asp800 general base. In this work, we report a QM/MM study aiming to better understand the aspects of covalent adduct formation, including the role of protein flexibility on chemical reactivity, the impact of electrophile location within the ATP binding site, and the impact of the acrylamide conformation (<i>s</i>-<i>cis</i> vs <i>s</i>-<i>trans</i>). We focus here on the diaminopyrimidine scaffold, as exemplified by Rocelitinib, where the electrophile is attached to its back pocket binding group. Our goal is to elucidate how electrophilic groups can be incorporated onto different inhibitor scaffolds targeting reactive active site residues. We find that irrespective of the EGFR MD conformation chosen, acrylamide, in both the <i>s</i>-<i>cis</i> or <i>s</i>-<i>trans</i>, can undergo reaction with rate-determining barriers of ∼20 kcal/mol. Interestingly, the nature of the rate-determining step for Rocelitinib-like inhibitors was found to be either direct nucleophilic attack or keto–enol tautomerization, depending on the precise protein and inhibitor conformation.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 7","pages":"3555–3567 3555–3567"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01985","citationCount":"0","resultStr":"{\"title\":\"Probing the Effect of Protein and Inhibitor Conformational Flexibility on the Reaction of Rocelitinib-Like Covalent Inhibitors of Epidermal Growth Factor Receptor. A Quantum Mechanics/Molecular Mechanics Study\",\"authors\":\"Orathai Kaewkham, Duangkamol Gleeson*, Poowadon Fukasem, Jirapat Santatiwongchai, Donald J. L. Jones, Robert G. Britton and M. Paul Gleeson*, \",\"doi\":\"10.1021/acs.jcim.4c0198510.1021/acs.jcim.4c01985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Epidermal growth factor receptor (EGFR) is a tyrosine kinase and a validated target for non-small cell lung cancer (NSCLC). Drug discovery efforts on this target initially focused on traditional competitive, reversible ATP-binding site inhibitors; however, irreversible covalent binding EGFR inhibitors have become increasingly more popular. Covalent EGFR inhibitors have been developed using a range of different scaffolds, and unsurprisingly, the incorporation of an electrophilic acrylamide group can result in sizable orientation differences relative to the Cys797 nucleophile and the Asp800 general base. In this work, we report a QM/MM study aiming to better understand the aspects of covalent adduct formation, including the role of protein flexibility on chemical reactivity, the impact of electrophile location within the ATP binding site, and the impact of the acrylamide conformation (<i>s</i>-<i>cis</i> vs <i>s</i>-<i>trans</i>). We focus here on the diaminopyrimidine scaffold, as exemplified by Rocelitinib, where the electrophile is attached to its back pocket binding group. Our goal is to elucidate how electrophilic groups can be incorporated onto different inhibitor scaffolds targeting reactive active site residues. We find that irrespective of the EGFR MD conformation chosen, acrylamide, in both the <i>s</i>-<i>cis</i> or <i>s</i>-<i>trans</i>, can undergo reaction with rate-determining barriers of ∼20 kcal/mol. Interestingly, the nature of the rate-determining step for Rocelitinib-like inhibitors was found to be either direct nucleophilic attack or keto–enol tautomerization, depending on the precise protein and inhibitor conformation.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 7\",\"pages\":\"3555–3567 3555–3567\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01985\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01985\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01985","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Probing the Effect of Protein and Inhibitor Conformational Flexibility on the Reaction of Rocelitinib-Like Covalent Inhibitors of Epidermal Growth Factor Receptor. A Quantum Mechanics/Molecular Mechanics Study
Epidermal growth factor receptor (EGFR) is a tyrosine kinase and a validated target for non-small cell lung cancer (NSCLC). Drug discovery efforts on this target initially focused on traditional competitive, reversible ATP-binding site inhibitors; however, irreversible covalent binding EGFR inhibitors have become increasingly more popular. Covalent EGFR inhibitors have been developed using a range of different scaffolds, and unsurprisingly, the incorporation of an electrophilic acrylamide group can result in sizable orientation differences relative to the Cys797 nucleophile and the Asp800 general base. In this work, we report a QM/MM study aiming to better understand the aspects of covalent adduct formation, including the role of protein flexibility on chemical reactivity, the impact of electrophile location within the ATP binding site, and the impact of the acrylamide conformation (s-cis vs s-trans). We focus here on the diaminopyrimidine scaffold, as exemplified by Rocelitinib, where the electrophile is attached to its back pocket binding group. Our goal is to elucidate how electrophilic groups can be incorporated onto different inhibitor scaffolds targeting reactive active site residues. We find that irrespective of the EGFR MD conformation chosen, acrylamide, in both the s-cis or s-trans, can undergo reaction with rate-determining barriers of ∼20 kcal/mol. Interestingly, the nature of the rate-determining step for Rocelitinib-like inhibitors was found to be either direct nucleophilic attack or keto–enol tautomerization, depending on the precise protein and inhibitor conformation.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.