用均匀Li4Mn5O12@PDA-Li2SO4涂层一步法实现富锂正极材料优越的电化学性能

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Zhanshuo Liang, Cuifeng Wang, Guohua Li, Haoxiang Zhuo, Lihao Guo, Haolin Liu, Zhihao Jin, Zhimin Ren* and Jiantao Wang*, 
{"title":"用均匀Li4Mn5O12@PDA-Li2SO4涂层一步法实现富锂正极材料优越的电化学性能","authors":"Zhanshuo Liang,&nbsp;Cuifeng Wang,&nbsp;Guohua Li,&nbsp;Haoxiang Zhuo,&nbsp;Lihao Guo,&nbsp;Haolin Liu,&nbsp;Zhihao Jin,&nbsp;Zhimin Ren* and Jiantao Wang*,&nbsp;","doi":"10.1021/acsaem.4c0291710.1021/acsaem.4c02917","DOIUrl":null,"url":null,"abstract":"<p >Li-rich Mn-rich layered oxides (LLOs) are considered key cathode candidates for next-generation lithium-ion batteries (LIBs) because of their high specific capacity that owes to the anionic redox. However, the poor cycling performance, low initial Coulombic efficiency, and unsatisfactory rate performance of LLOs hinder their practical application. Herein, a uniform multifunctional Layered@Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub>@PDA-Li<sub>2</sub>SO<sub>4</sub> coating layer is constructed on the surface of a Li-rich material by a simple one-step process. By constructing a zero-strain Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub> spinel with more Mn<sup>4+</sup> on the particle surface, the Jahn–Teller effect and the resulting manganese dissolution can be avoided. PDA provides a chemical protective layer that can reduce the growth of an undesirable cathode electrolyte interphase and also promotes the rapid ion migration of electrons/ions. This coating layer can significantly improve the initial Coulombic efficiency (ICE), rate performances, and cycling stability of the material. The as-prepared LLO exhibits a greatly strengthened specific capacity of 270.2 mAh/g with an enhanced ICE of 83.38% and long-term cyclability of 79.14% retention after 500 cycles. The as-prepared LLO’s discharge specific capacity at 10C is 131 mAh/g, whereas the pristine LLO only has 93 mAh/g. This study elucidates the mechanism of the composite surface structure and establishes the relationship between lithium-ion interfacial conductivity and electrochemical performance, offering a strategy for near-surface design of LLOs in high-energy-density LIBs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4166–4175 4166–4175"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Achieving Superior Electrochemical Performance of Li-Rich Cathode Materials with a Uniform Li4Mn5O12@PDA-Li2SO4 Coating Layer by a One-Step Approach\",\"authors\":\"Zhanshuo Liang,&nbsp;Cuifeng Wang,&nbsp;Guohua Li,&nbsp;Haoxiang Zhuo,&nbsp;Lihao Guo,&nbsp;Haolin Liu,&nbsp;Zhihao Jin,&nbsp;Zhimin Ren* and Jiantao Wang*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0291710.1021/acsaem.4c02917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Li-rich Mn-rich layered oxides (LLOs) are considered key cathode candidates for next-generation lithium-ion batteries (LIBs) because of their high specific capacity that owes to the anionic redox. However, the poor cycling performance, low initial Coulombic efficiency, and unsatisfactory rate performance of LLOs hinder their practical application. Herein, a uniform multifunctional Layered@Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub>@PDA-Li<sub>2</sub>SO<sub>4</sub> coating layer is constructed on the surface of a Li-rich material by a simple one-step process. By constructing a zero-strain Li<sub>4</sub>Mn<sub>5</sub>O<sub>12</sub> spinel with more Mn<sup>4+</sup> on the particle surface, the Jahn–Teller effect and the resulting manganese dissolution can be avoided. PDA provides a chemical protective layer that can reduce the growth of an undesirable cathode electrolyte interphase and also promotes the rapid ion migration of electrons/ions. This coating layer can significantly improve the initial Coulombic efficiency (ICE), rate performances, and cycling stability of the material. The as-prepared LLO exhibits a greatly strengthened specific capacity of 270.2 mAh/g with an enhanced ICE of 83.38% and long-term cyclability of 79.14% retention after 500 cycles. The as-prepared LLO’s discharge specific capacity at 10C is 131 mAh/g, whereas the pristine LLO only has 93 mAh/g. This study elucidates the mechanism of the composite surface structure and establishes the relationship between lithium-ion interfacial conductivity and electrochemical performance, offering a strategy for near-surface design of LLOs in high-energy-density LIBs.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 7\",\"pages\":\"4166–4175 4166–4175\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02917\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02917","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

富锂富锰层状氧化物(LLOs)被认为是下一代锂离子电池(LIBs)的关键阴极候选者,因为它们由于阴离子氧化还原而具有高比容量。然而,LLOs循环性能差、初始库仑效率低、速率性能差等问题阻碍了其实际应用。本文通过简单的一步工艺在富锂材料表面构建了均匀多功能Layered@Li4Mn5O12@PDA-Li2SO4涂层。通过在颗粒表面构建具有更多Mn4+的零应变Li4Mn5O12尖晶石,可以避免Jahn-Teller效应和由此产生的锰溶解。PDA提供了一个化学保护层,可以减少不良阴极电解质界面的生长,也促进了电子/离子的快速离子迁移。该涂层可以显著提高材料的初始库仑效率(ICE)、速率性能和循环稳定性。经500次循环后,LLO的比容量达到270.2 mAh/g, ICE增强83.38%,长期循环率达到79.14%。制备的LLO在10C时的放电比容量为131 mAh/g,而原始LLO仅为93 mAh/g。本研究阐明了复合表面结构的机理,建立了锂离子界面电导率与电化学性能之间的关系,为高能量密度锂离子电池中LLOs的近表面设计提供了策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achieving Superior Electrochemical Performance of Li-Rich Cathode Materials with a Uniform Li4Mn5O12@PDA-Li2SO4 Coating Layer by a One-Step Approach

Achieving Superior Electrochemical Performance of Li-Rich Cathode Materials with a Uniform Li4Mn5O12@PDA-Li2SO4 Coating Layer by a One-Step Approach

Li-rich Mn-rich layered oxides (LLOs) are considered key cathode candidates for next-generation lithium-ion batteries (LIBs) because of their high specific capacity that owes to the anionic redox. However, the poor cycling performance, low initial Coulombic efficiency, and unsatisfactory rate performance of LLOs hinder their practical application. Herein, a uniform multifunctional Layered@Li4Mn5O12@PDA-Li2SO4 coating layer is constructed on the surface of a Li-rich material by a simple one-step process. By constructing a zero-strain Li4Mn5O12 spinel with more Mn4+ on the particle surface, the Jahn–Teller effect and the resulting manganese dissolution can be avoided. PDA provides a chemical protective layer that can reduce the growth of an undesirable cathode electrolyte interphase and also promotes the rapid ion migration of electrons/ions. This coating layer can significantly improve the initial Coulombic efficiency (ICE), rate performances, and cycling stability of the material. The as-prepared LLO exhibits a greatly strengthened specific capacity of 270.2 mAh/g with an enhanced ICE of 83.38% and long-term cyclability of 79.14% retention after 500 cycles. The as-prepared LLO’s discharge specific capacity at 10C is 131 mAh/g, whereas the pristine LLO only has 93 mAh/g. This study elucidates the mechanism of the composite surface structure and establishes the relationship between lithium-ion interfacial conductivity and electrochemical performance, offering a strategy for near-surface design of LLOs in high-energy-density LIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信