柔性压电纳米发电机与铁电金属配体笼自供电传感器的应用

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Neetu Prajesh, Vikash Kushwaha, Dipti R. Naphade, Balu Praveenkumar, Jan K. Zaręba*, Thomas D. Anthopoulos* and Ramamoorthy Boomishankar*, 
{"title":"柔性压电纳米发电机与铁电金属配体笼自供电传感器的应用","authors":"Neetu Prajesh,&nbsp;Vikash Kushwaha,&nbsp;Dipti R. Naphade,&nbsp;Balu Praveenkumar,&nbsp;Jan K. Zaręba*,&nbsp;Thomas D. Anthopoulos* and Ramamoorthy Boomishankar*,&nbsp;","doi":"10.1021/acsaem.5c0026910.1021/acsaem.5c00269","DOIUrl":null,"url":null,"abstract":"<p >Ferroelectric materials have emerged as promising candidates for piezoelectric nanogenerators, attributed to their superior energy conversion efficiency derived from inherent polarization characteristics. Polar metal–ligand assemblies represent advantageous alternatives to conventional inorganic ceramics and organic polymers, offering tunable electronic properties, environmental benignity, and enhanced energy conversion capabilities. We demonstrate an octahedral [[Co<sub>6</sub>(H<sub>2</sub>O)<sub>12</sub>(TPTA)<sub>8</sub>](NO<sub>3</sub>)<sub>12</sub>·50H<sub>2</sub>O] cage assembly exhibiting pronounced ferroelectric behavior, characterized by a <i>P–E</i> hysteresis loop with a remnant polarization of 6.84 μC cm<sup>–2</sup>. The ferroelectric and piezoelectric properties of <b>1</b> were unambiguously confirmed through the visualization of electrical domains in single crystals and crystalline thin films via piezoresponse force microscopy (PFM). Single-point, bias-dependent PFM spectroscopy measurements revealed characteristic amplitude-butterfly and phase-hysteresis loops, substantiating the piezoelectric nature of the material. Piezoelectric energy harvesting investigations conducted on polydimethylsiloxane (PDMS) composite materials revealed a maximum peak output voltage of 12.20 V and a power density of 14.85 μW cm<sup>–2</sup> for the optimized 20 wt % <b>1</b>-PDMS composite device. The practical utility was validated through the implementation of a smart pressure sensor, wherein a mat device, constructed from five parallel-connected independent devices, successfully functioned as a sensor capable of illuminating a commercial LED under gentle mechanical stimulation. These findings establish the potential of this cage system for integration into self-powered sensor technologies.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4648–4655 4648–4655"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.5c00269","citationCount":"0","resultStr":"{\"title\":\"Flexible Piezoelectric Nanogenerator with a Ferroelectric Metal–Ligand Cage for Self-Powered Sensor Applications\",\"authors\":\"Neetu Prajesh,&nbsp;Vikash Kushwaha,&nbsp;Dipti R. Naphade,&nbsp;Balu Praveenkumar,&nbsp;Jan K. Zaręba*,&nbsp;Thomas D. Anthopoulos* and Ramamoorthy Boomishankar*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c0026910.1021/acsaem.5c00269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ferroelectric materials have emerged as promising candidates for piezoelectric nanogenerators, attributed to their superior energy conversion efficiency derived from inherent polarization characteristics. Polar metal–ligand assemblies represent advantageous alternatives to conventional inorganic ceramics and organic polymers, offering tunable electronic properties, environmental benignity, and enhanced energy conversion capabilities. We demonstrate an octahedral [[Co<sub>6</sub>(H<sub>2</sub>O)<sub>12</sub>(TPTA)<sub>8</sub>](NO<sub>3</sub>)<sub>12</sub>·50H<sub>2</sub>O] cage assembly exhibiting pronounced ferroelectric behavior, characterized by a <i>P–E</i> hysteresis loop with a remnant polarization of 6.84 μC cm<sup>–2</sup>. The ferroelectric and piezoelectric properties of <b>1</b> were unambiguously confirmed through the visualization of electrical domains in single crystals and crystalline thin films via piezoresponse force microscopy (PFM). Single-point, bias-dependent PFM spectroscopy measurements revealed characteristic amplitude-butterfly and phase-hysteresis loops, substantiating the piezoelectric nature of the material. Piezoelectric energy harvesting investigations conducted on polydimethylsiloxane (PDMS) composite materials revealed a maximum peak output voltage of 12.20 V and a power density of 14.85 μW cm<sup>–2</sup> for the optimized 20 wt % <b>1</b>-PDMS composite device. The practical utility was validated through the implementation of a smart pressure sensor, wherein a mat device, constructed from five parallel-connected independent devices, successfully functioned as a sensor capable of illuminating a commercial LED under gentle mechanical stimulation. These findings establish the potential of this cage system for integration into self-powered sensor technologies.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 7\",\"pages\":\"4648–4655 4648–4655\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaem.5c00269\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c00269\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00269","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铁电材料因其固有的极化特性而具有卓越的能量转换效率,已成为压电纳米发电机的理想候选材料。极性金属配体组件是传统无机陶瓷和有机聚合物的有利替代品,具有可调的电子特性、对环境无害以及更强的能量转换能力。我们展示了一种八面体[[Co6(H2O)12(TPTA)8](NO3)12-50H2O]笼状组装体,它表现出明显的铁电行为,其特点是具有残余极化为 6.84 μC cm-2 的 P-E 磁滞环。通过压电响应力显微镜(PFM)观察单晶体和晶体薄膜中的电畴,明确证实了 1 的铁电和压电特性。单点、依赖偏压的压电显微镜光谱测量揭示了特征性的振幅-蝶形和相位-滞后环路,从而证实了该材料的压电性质。在聚二甲基硅氧烷(PDMS)复合材料上进行的压电能量采集研究表明,经过优化的 20 wt % 1-PDMS 复合器件的最大峰值输出电压为 12.20 V,功率密度为 14.85 μW cm-2。通过实施智能压力传感器验证了该器件的实用性,其中由五个并联的独立器件构成的垫状器件成功地发挥了传感器的功能,能够在温和的机械刺激下点亮商用 LED。这些研究结果证明,这种笼式系统具有集成到自供电传感器技术中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible Piezoelectric Nanogenerator with a Ferroelectric Metal–Ligand Cage for Self-Powered Sensor Applications

Ferroelectric materials have emerged as promising candidates for piezoelectric nanogenerators, attributed to their superior energy conversion efficiency derived from inherent polarization characteristics. Polar metal–ligand assemblies represent advantageous alternatives to conventional inorganic ceramics and organic polymers, offering tunable electronic properties, environmental benignity, and enhanced energy conversion capabilities. We demonstrate an octahedral [[Co6(H2O)12(TPTA)8](NO3)12·50H2O] cage assembly exhibiting pronounced ferroelectric behavior, characterized by a P–E hysteresis loop with a remnant polarization of 6.84 μC cm–2. The ferroelectric and piezoelectric properties of 1 were unambiguously confirmed through the visualization of electrical domains in single crystals and crystalline thin films via piezoresponse force microscopy (PFM). Single-point, bias-dependent PFM spectroscopy measurements revealed characteristic amplitude-butterfly and phase-hysteresis loops, substantiating the piezoelectric nature of the material. Piezoelectric energy harvesting investigations conducted on polydimethylsiloxane (PDMS) composite materials revealed a maximum peak output voltage of 12.20 V and a power density of 14.85 μW cm–2 for the optimized 20 wt % 1-PDMS composite device. The practical utility was validated through the implementation of a smart pressure sensor, wherein a mat device, constructed from five parallel-connected independent devices, successfully functioned as a sensor capable of illuminating a commercial LED under gentle mechanical stimulation. These findings establish the potential of this cage system for integration into self-powered sensor technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信