{"title":"用于缺血性卒中治疗的多靶点天然化合物:深度学习预测和实验验证的整合","authors":"Junyu Zhou, Chen Li, Yu Yue, Yong Kwan Kim* and Sunmin Park*, ","doi":"10.1021/acs.jcim.5c0013510.1021/acs.jcim.5c00135","DOIUrl":null,"url":null,"abstract":"<p >Ischemic stroke’s complex pathophysiology demands therapeutic approaches targeting multiple pathways simultaneously, yet current treatments remain limited. We developed an innovative drug discovery pipeline combining a deep learning approach with experimental validation to identify natural compounds with comprehensive neuroprotective properties. Our computational framework integrated SELFormer, a transformer-based deep learning model, and multiple deep learning algorithms to predict NC bioactivity against seven crucial stroke-related targets (<i>ACE, GLA, MMP9, NPFFR2, PDE4D</i>, and <i>eNOS</i>). The pipeline encompassed IC50 predictions, clustering analysis, quantitative structure–activity relationship (QSAR) modeling, and uniform manifold approximation and projection (UMAP)-based bioactivity profiling followed by molecular docking studies and experimental validation. Analysis revealed six distinct NC clusters with unique molecular signatures. UMAP projection identified 11 medium-activity (6 < pIC50 ≤ 7) and 57 high-activity (pIC50 > 7) compounds, with molecular docking confirming strong correlations between binding energies and predicted pIC50 values. <i>In vitro</i> studies using NGF-differentiated PC12 cells under oxygen-glucose deprivation demonstrated significant neuroprotective effects of four high-activity compounds: feruloyl glucose, <span>l</span>-hydroxy-l<span>-</span>tryptophan, mulberrin, and ellagic acid. These compounds enhanced cell viability, reduced acetylcholinesterase activity and lipid peroxidation, suppressed <i>TNF-</i>α expression, and upregulated <i>BDNF</i> mRNA levels. Notably, mulberrin and ellagic acid showed superior efficacy in modulating oxidative stress, inflammation, and neurotrophic signaling. This study establishes a robust deep learning-driven framework for identifying multitarget natural therapeutics for ischemic stroke. The validated compounds, particularly mulberrin and ellagic acid, are promising for stroke treatment development. Our findings demonstrate the effectiveness of integrating computational prediction with experimental validation in accelerating drug discovery for complex neurological disorders.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 7","pages":"3309–3323 3309–3323"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multitarget Natural Compounds for Ischemic Stroke Treatment: Integration of Deep Learning Prediction and Experimental Validation\",\"authors\":\"Junyu Zhou, Chen Li, Yu Yue, Yong Kwan Kim* and Sunmin Park*, \",\"doi\":\"10.1021/acs.jcim.5c0013510.1021/acs.jcim.5c00135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ischemic stroke’s complex pathophysiology demands therapeutic approaches targeting multiple pathways simultaneously, yet current treatments remain limited. We developed an innovative drug discovery pipeline combining a deep learning approach with experimental validation to identify natural compounds with comprehensive neuroprotective properties. Our computational framework integrated SELFormer, a transformer-based deep learning model, and multiple deep learning algorithms to predict NC bioactivity against seven crucial stroke-related targets (<i>ACE, GLA, MMP9, NPFFR2, PDE4D</i>, and <i>eNOS</i>). The pipeline encompassed IC50 predictions, clustering analysis, quantitative structure–activity relationship (QSAR) modeling, and uniform manifold approximation and projection (UMAP)-based bioactivity profiling followed by molecular docking studies and experimental validation. Analysis revealed six distinct NC clusters with unique molecular signatures. UMAP projection identified 11 medium-activity (6 < pIC50 ≤ 7) and 57 high-activity (pIC50 > 7) compounds, with molecular docking confirming strong correlations between binding energies and predicted pIC50 values. <i>In vitro</i> studies using NGF-differentiated PC12 cells under oxygen-glucose deprivation demonstrated significant neuroprotective effects of four high-activity compounds: feruloyl glucose, <span>l</span>-hydroxy-l<span>-</span>tryptophan, mulberrin, and ellagic acid. These compounds enhanced cell viability, reduced acetylcholinesterase activity and lipid peroxidation, suppressed <i>TNF-</i>α expression, and upregulated <i>BDNF</i> mRNA levels. Notably, mulberrin and ellagic acid showed superior efficacy in modulating oxidative stress, inflammation, and neurotrophic signaling. This study establishes a robust deep learning-driven framework for identifying multitarget natural therapeutics for ischemic stroke. The validated compounds, particularly mulberrin and ellagic acid, are promising for stroke treatment development. Our findings demonstrate the effectiveness of integrating computational prediction with experimental validation in accelerating drug discovery for complex neurological disorders.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 7\",\"pages\":\"3309–3323 3309–3323\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00135\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.5c00135","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Multitarget Natural Compounds for Ischemic Stroke Treatment: Integration of Deep Learning Prediction and Experimental Validation
Ischemic stroke’s complex pathophysiology demands therapeutic approaches targeting multiple pathways simultaneously, yet current treatments remain limited. We developed an innovative drug discovery pipeline combining a deep learning approach with experimental validation to identify natural compounds with comprehensive neuroprotective properties. Our computational framework integrated SELFormer, a transformer-based deep learning model, and multiple deep learning algorithms to predict NC bioactivity against seven crucial stroke-related targets (ACE, GLA, MMP9, NPFFR2, PDE4D, and eNOS). The pipeline encompassed IC50 predictions, clustering analysis, quantitative structure–activity relationship (QSAR) modeling, and uniform manifold approximation and projection (UMAP)-based bioactivity profiling followed by molecular docking studies and experimental validation. Analysis revealed six distinct NC clusters with unique molecular signatures. UMAP projection identified 11 medium-activity (6 < pIC50 ≤ 7) and 57 high-activity (pIC50 > 7) compounds, with molecular docking confirming strong correlations between binding energies and predicted pIC50 values. In vitro studies using NGF-differentiated PC12 cells under oxygen-glucose deprivation demonstrated significant neuroprotective effects of four high-activity compounds: feruloyl glucose, l-hydroxy-l-tryptophan, mulberrin, and ellagic acid. These compounds enhanced cell viability, reduced acetylcholinesterase activity and lipid peroxidation, suppressed TNF-α expression, and upregulated BDNF mRNA levels. Notably, mulberrin and ellagic acid showed superior efficacy in modulating oxidative stress, inflammation, and neurotrophic signaling. This study establishes a robust deep learning-driven framework for identifying multitarget natural therapeutics for ischemic stroke. The validated compounds, particularly mulberrin and ellagic acid, are promising for stroke treatment development. Our findings demonstrate the effectiveness of integrating computational prediction with experimental validation in accelerating drug discovery for complex neurological disorders.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.