用于钙钛矿太阳能电池的无掺杂聚合物空穴传输材料:简单就是最好!

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ekaterina A. Komissarova*, Sergei A. Kuklin, Victoria V. Ozerova, Andrey V. Maskaev, Azat F. Akbulatov, Nikita A. Emelianov, Alexander V. Mumyatov, Lavrenty G. Gutsev, Lyubov A. Frolova and Pavel A. Troshin*, 
{"title":"用于钙钛矿太阳能电池的无掺杂聚合物空穴传输材料:简单就是最好!","authors":"Ekaterina A. Komissarova*,&nbsp;Sergei A. Kuklin,&nbsp;Victoria V. Ozerova,&nbsp;Andrey V. Maskaev,&nbsp;Azat F. Akbulatov,&nbsp;Nikita A. Emelianov,&nbsp;Alexander V. Mumyatov,&nbsp;Lavrenty G. Gutsev,&nbsp;Lyubov A. Frolova and Pavel A. Troshin*,&nbsp;","doi":"10.1021/acsaem.4c0263110.1021/acsaem.4c02631","DOIUrl":null,"url":null,"abstract":"<p >A series of (BDD-X)<sub>n</sub> conjugated polymers, comprised of 5,7-bis(2-ethylhexyl)benzo[1,2-<i>c</i>:4,5-<i>c</i>′]dithiophene-4,8-dione (BDD) and X = B (<b>P1</b>), X = TBT (<b>P2</b>), and X = TBTBT (<b>P3</b>), where T = thiophene and B = benzo[<i>c</i>][1,2,5]thiadiazole, have been synthesized and applied as dopant-free hole-transport layer materials in perovskite solar cells (PSCs). We explored the effect of the molecular structure of the block X on the optical and electronic properties of the polymers, the nanoscale morphology of their films, and the impact of all these parameters on the performance of the polymers in PSCs. As a result, using the polymer <b>P1</b> with the simplest molecular architecture provided a power conversion efficiency (PCE) of 20.1% in solar cells, thus outperforming devices assembled with the more sophisticated polymers <b>P2</b>–<b>P3</b> or the reference poly(triarylamine)-based hole-transport materials. The enhanced device performance is attributed to a better HOMO alignment of <b>P1</b> with respect to the perovskite valence band, a low concentration of defects and suppressed carrier recombination at the <b>P1</b>/perovskite interface and, most importantly, a highly uniform film structure, as revealed by atomic force microscopy and infrared scattering near-field optical microscopy (IR s-SNOM) techniques. The supramolecular interactions of the building blocks of polymers <b>P1</b>–<b>P3</b> with the perovskite films, resulting in the passivation of surface defects, were further studied by density functional theory calculations.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4072–4079 4072–4079"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dopant-Free Polymeric Hole-Transport Materials for Perovskite Solar Cells: Simple Is Best!\",\"authors\":\"Ekaterina A. Komissarova*,&nbsp;Sergei A. Kuklin,&nbsp;Victoria V. Ozerova,&nbsp;Andrey V. Maskaev,&nbsp;Azat F. Akbulatov,&nbsp;Nikita A. Emelianov,&nbsp;Alexander V. Mumyatov,&nbsp;Lavrenty G. Gutsev,&nbsp;Lyubov A. Frolova and Pavel A. Troshin*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0263110.1021/acsaem.4c02631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A series of (BDD-X)<sub>n</sub> conjugated polymers, comprised of 5,7-bis(2-ethylhexyl)benzo[1,2-<i>c</i>:4,5-<i>c</i>′]dithiophene-4,8-dione (BDD) and X = B (<b>P1</b>), X = TBT (<b>P2</b>), and X = TBTBT (<b>P3</b>), where T = thiophene and B = benzo[<i>c</i>][1,2,5]thiadiazole, have been synthesized and applied as dopant-free hole-transport layer materials in perovskite solar cells (PSCs). We explored the effect of the molecular structure of the block X on the optical and electronic properties of the polymers, the nanoscale morphology of their films, and the impact of all these parameters on the performance of the polymers in PSCs. As a result, using the polymer <b>P1</b> with the simplest molecular architecture provided a power conversion efficiency (PCE) of 20.1% in solar cells, thus outperforming devices assembled with the more sophisticated polymers <b>P2</b>–<b>P3</b> or the reference poly(triarylamine)-based hole-transport materials. The enhanced device performance is attributed to a better HOMO alignment of <b>P1</b> with respect to the perovskite valence band, a low concentration of defects and suppressed carrier recombination at the <b>P1</b>/perovskite interface and, most importantly, a highly uniform film structure, as revealed by atomic force microscopy and infrared scattering near-field optical microscopy (IR s-SNOM) techniques. The supramolecular interactions of the building blocks of polymers <b>P1</b>–<b>P3</b> with the perovskite films, resulting in the passivation of surface defects, were further studied by density functional theory calculations.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 7\",\"pages\":\"4072–4079 4072–4079\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02631\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02631","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

一系列 (BDD-X)n 共轭聚合物,由 5,7-双(2-乙基己基)苯并[1,2-c:4,5-c′]二噻吩-4,8-二酮(BDD)和 X = B(P1)、X = TBT(P2)和 X = TBTBT(P3)(其中 T = 噻吩,B = 苯并[c][1,2,5]噻二唑)组成。我们探索了嵌段 X 的分子结构对聚合物的光学和电子特性、其薄膜的纳米级形貌的影响,以及所有这些参数对聚合物在 PSC 中的性能的影响。结果,使用分子结构最简单的聚合物 P1,太阳能电池的功率转换效率(PCE)达到了 20.1%,超过了使用更复杂的聚合物 P2-P3 或基于参考聚(三芳胺)空穴传输材料组装的设备。器件性能的提高归功于 P1 相对于透辉石价带更好的 HOMO 排列、P1/透辉石界面的低缺陷浓度和载流子重组抑制,最重要的是,原子力显微镜和红外散射近场光学显微镜(IR s-SNOM)技术揭示了高度均匀的薄膜结构。密度泛函理论计算进一步研究了聚合物 P1-P3 构建模块与过氧化物薄膜之间的超分子相互作用,这种相互作用导致了表面缺陷的钝化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dopant-Free Polymeric Hole-Transport Materials for Perovskite Solar Cells: Simple Is Best!

Dopant-Free Polymeric Hole-Transport Materials for Perovskite Solar Cells: Simple Is Best!

A series of (BDD-X)n conjugated polymers, comprised of 5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione (BDD) and X = B (P1), X = TBT (P2), and X = TBTBT (P3), where T = thiophene and B = benzo[c][1,2,5]thiadiazole, have been synthesized and applied as dopant-free hole-transport layer materials in perovskite solar cells (PSCs). We explored the effect of the molecular structure of the block X on the optical and electronic properties of the polymers, the nanoscale morphology of their films, and the impact of all these parameters on the performance of the polymers in PSCs. As a result, using the polymer P1 with the simplest molecular architecture provided a power conversion efficiency (PCE) of 20.1% in solar cells, thus outperforming devices assembled with the more sophisticated polymers P2P3 or the reference poly(triarylamine)-based hole-transport materials. The enhanced device performance is attributed to a better HOMO alignment of P1 with respect to the perovskite valence band, a low concentration of defects and suppressed carrier recombination at the P1/perovskite interface and, most importantly, a highly uniform film structure, as revealed by atomic force microscopy and infrared scattering near-field optical microscopy (IR s-SNOM) techniques. The supramolecular interactions of the building blocks of polymers P1P3 with the perovskite films, resulting in the passivation of surface defects, were further studied by density functional theory calculations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信