N K Wally, Eslam Sheha, Ibrahim Mohamed Morad and Mohamed M. El-Desoky*,
{"title":"添加LiCl和水溶溶剂对水镁离子电池性能的联合影响","authors":"N K Wally, Eslam Sheha, Ibrahim Mohamed Morad and Mohamed M. El-Desoky*, ","doi":"10.1021/acsaem.4c0333710.1021/acsaem.4c03337","DOIUrl":null,"url":null,"abstract":"<p >The advancement of a competitive Mg-ion battery is restricted by the limited mobility of Mg ions in the current host materials. Herein, LiCl is added as a supporting salt to an MgCl<sub>2</sub> salt-based, polyethylene glycol (PEG) solvent-in-water electrolyte (SIW) to obtain the H-PG-Mg electrolyte. The LiCl addition is employed to benefit from its reported synergistic effects in minimizing cell potential and shielding effects, suppressing dendritic formation, and promoting the ability of MgCl<sub>2</sub> deposits to dissolve and expose a fresh anode surface. The H-PG-Mg@Li electrolyte shows the highest electrochemical stability window (ESW) of 3.3 V, which is 1.5 times higher than the LiCl-free electrolyte, and the highest ion transference number of 0.70. MgO-V<sub>2</sub>O<sub>5</sub>–P<sub>2</sub>S<sub>5</sub> (G) electrode is tested in a three-electrode configuration and displays superior capacity retention of 60% after 1000 cycles. The G/H-PG-Mg@Li/Mg cell exhibits the best cycling stability of up to 150 cycles. The ability of the G cathode to reversibly accommodate Mg<sup>2+</sup> cations in H-PG-Mg@Li due to lower overall charge density was highlighted using ex-situ elemental analysis, where the ratio of the ions followed the charging and discharging processes. These results highlight LiCl addition and SIW strategies as effective approaches to upgrading the electrochemical performance of current aqueous Mg batteries.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4441–4455 4441–4455"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Effects of LiCl Addition and Solvent-in-Water Approaches on Aqueous Magnesium-Ion Battery Performance\",\"authors\":\"N K Wally, Eslam Sheha, Ibrahim Mohamed Morad and Mohamed M. El-Desoky*, \",\"doi\":\"10.1021/acsaem.4c0333710.1021/acsaem.4c03337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The advancement of a competitive Mg-ion battery is restricted by the limited mobility of Mg ions in the current host materials. Herein, LiCl is added as a supporting salt to an MgCl<sub>2</sub> salt-based, polyethylene glycol (PEG) solvent-in-water electrolyte (SIW) to obtain the H-PG-Mg electrolyte. The LiCl addition is employed to benefit from its reported synergistic effects in minimizing cell potential and shielding effects, suppressing dendritic formation, and promoting the ability of MgCl<sub>2</sub> deposits to dissolve and expose a fresh anode surface. The H-PG-Mg@Li electrolyte shows the highest electrochemical stability window (ESW) of 3.3 V, which is 1.5 times higher than the LiCl-free electrolyte, and the highest ion transference number of 0.70. MgO-V<sub>2</sub>O<sub>5</sub>–P<sub>2</sub>S<sub>5</sub> (G) electrode is tested in a three-electrode configuration and displays superior capacity retention of 60% after 1000 cycles. The G/H-PG-Mg@Li/Mg cell exhibits the best cycling stability of up to 150 cycles. The ability of the G cathode to reversibly accommodate Mg<sup>2+</sup> cations in H-PG-Mg@Li due to lower overall charge density was highlighted using ex-situ elemental analysis, where the ratio of the ions followed the charging and discharging processes. These results highlight LiCl addition and SIW strategies as effective approaches to upgrading the electrochemical performance of current aqueous Mg batteries.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 7\",\"pages\":\"4441–4455 4441–4455\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c03337\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03337","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Combined Effects of LiCl Addition and Solvent-in-Water Approaches on Aqueous Magnesium-Ion Battery Performance
The advancement of a competitive Mg-ion battery is restricted by the limited mobility of Mg ions in the current host materials. Herein, LiCl is added as a supporting salt to an MgCl2 salt-based, polyethylene glycol (PEG) solvent-in-water electrolyte (SIW) to obtain the H-PG-Mg electrolyte. The LiCl addition is employed to benefit from its reported synergistic effects in minimizing cell potential and shielding effects, suppressing dendritic formation, and promoting the ability of MgCl2 deposits to dissolve and expose a fresh anode surface. The H-PG-Mg@Li electrolyte shows the highest electrochemical stability window (ESW) of 3.3 V, which is 1.5 times higher than the LiCl-free electrolyte, and the highest ion transference number of 0.70. MgO-V2O5–P2S5 (G) electrode is tested in a three-electrode configuration and displays superior capacity retention of 60% after 1000 cycles. The G/H-PG-Mg@Li/Mg cell exhibits the best cycling stability of up to 150 cycles. The ability of the G cathode to reversibly accommodate Mg2+ cations in H-PG-Mg@Li due to lower overall charge density was highlighted using ex-situ elemental analysis, where the ratio of the ions followed the charging and discharging processes. These results highlight LiCl addition and SIW strategies as effective approaches to upgrading the electrochemical performance of current aqueous Mg batteries.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.