Hengliang Guo, Congxiang Zhang, Jiandong Shang, Dujuan Zhang, Yang Guo, Kang Gao, Kecheng Yang, Xu Gao, Dezhong Yao, Wanting Chen, Mengfan Yan and Gang Wu*,
{"title":"基于拓扑增强图神经网络的药物靶点亲和力预测","authors":"Hengliang Guo, Congxiang Zhang, Jiandong Shang, Dujuan Zhang, Yang Guo, Kang Gao, Kecheng Yang, Xu Gao, Dezhong Yao, Wanting Chen, Mengfan Yan and Gang Wu*, ","doi":"10.1021/acs.jcim.4c0133510.1021/acs.jcim.4c01335","DOIUrl":null,"url":null,"abstract":"<p >Graph neural networks (GNNs) have achieved remarkable success in drug-target affinity (DTA) analysis, reducing the cost of drug development. Unlike traditional one-dimensional (1D) sequence-based methods, GNNs leverage graph structures to capture richer protein and drug features, leading to improved DTA prediction performance. However, existing methods often neglect to incorporate valuable protein cavity information, a key aspect of protein physical chemistry. This study addresses this gap by proposing a novel topology-enhanced GNN for DTA prediction that integrates protein pocket data. Additionally, we optimize training and message-passing strategies to enhance the model’s feature representation capabilities. Our model’s effectiveness is validated on the Davis and KIBA data sets, demonstrating its ability to capture the intricate interplay between drugs and targets. The source code is publicly available on https://github.com/ZZDXgangwu/DTA.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"65 7","pages":"3749–3760 3749–3760"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug-Target Affinity Prediction Based on Topological Enhanced Graph Neural Networks\",\"authors\":\"Hengliang Guo, Congxiang Zhang, Jiandong Shang, Dujuan Zhang, Yang Guo, Kang Gao, Kecheng Yang, Xu Gao, Dezhong Yao, Wanting Chen, Mengfan Yan and Gang Wu*, \",\"doi\":\"10.1021/acs.jcim.4c0133510.1021/acs.jcim.4c01335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Graph neural networks (GNNs) have achieved remarkable success in drug-target affinity (DTA) analysis, reducing the cost of drug development. Unlike traditional one-dimensional (1D) sequence-based methods, GNNs leverage graph structures to capture richer protein and drug features, leading to improved DTA prediction performance. However, existing methods often neglect to incorporate valuable protein cavity information, a key aspect of protein physical chemistry. This study addresses this gap by proposing a novel topology-enhanced GNN for DTA prediction that integrates protein pocket data. Additionally, we optimize training and message-passing strategies to enhance the model’s feature representation capabilities. Our model’s effectiveness is validated on the Davis and KIBA data sets, demonstrating its ability to capture the intricate interplay between drugs and targets. The source code is publicly available on https://github.com/ZZDXgangwu/DTA.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"65 7\",\"pages\":\"3749–3760 3749–3760\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01335\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01335","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
摘要
图神经网络(GNN)在药物靶点亲和力(DTA)分析方面取得了显著的成功,降低了药物开发的成本。与传统的基于序列的一维(1D)方法不同,图神经网络利用图结构捕捉更丰富的蛋白质和药物特征,从而提高了 DTA 预测性能。然而,现有方法往往忽略了蛋白质物理化学的一个关键方面--有价值的蛋白质空腔信息。本研究针对这一缺陷,提出了一种用于 DTA 预测的新型拓扑增强 GNN,它整合了蛋白质口袋数据。此外,我们还优化了训练和信息传递策略,以增强模型的特征表示能力。我们的模型在 Davis 和 KIBA 数据集上验证了其有效性,证明它有能力捕捉药物和靶标之间错综复杂的相互作用。源代码可在 https://github.com/ZZDXgangwu/DTA 上公开获取。
Drug-Target Affinity Prediction Based on Topological Enhanced Graph Neural Networks
Graph neural networks (GNNs) have achieved remarkable success in drug-target affinity (DTA) analysis, reducing the cost of drug development. Unlike traditional one-dimensional (1D) sequence-based methods, GNNs leverage graph structures to capture richer protein and drug features, leading to improved DTA prediction performance. However, existing methods often neglect to incorporate valuable protein cavity information, a key aspect of protein physical chemistry. This study addresses this gap by proposing a novel topology-enhanced GNN for DTA prediction that integrates protein pocket data. Additionally, we optimize training and message-passing strategies to enhance the model’s feature representation capabilities. Our model’s effectiveness is validated on the Davis and KIBA data sets, demonstrating its ability to capture the intricate interplay between drugs and targets. The source code is publicly available on https://github.com/ZZDXgangwu/DTA.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.