IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Ali Can Güler*, Milan Masař, Michal Urbánek, Michal Machovský, Mohamed M. Elnagar, Radim Beranek* and Ivo Kuřitka*, 
{"title":"Integration of Gold Nanoparticles into BiVO4/WO3 Photoanodes via Electrochromic Activation of WO3 for Enhanced Photoelectrochemical Water Splitting","authors":"Ali Can Güler*,&nbsp;Milan Masař,&nbsp;Michal Urbánek,&nbsp;Michal Machovský,&nbsp;Mohamed M. Elnagar,&nbsp;Radim Beranek* and Ivo Kuřitka*,&nbsp;","doi":"10.1021/acsaem.4c0273510.1021/acsaem.4c02735","DOIUrl":null,"url":null,"abstract":"<p >The development of highly efficient photoanodes is crucial for enhancing the energy conversion efficiency in photoelectrochemical water splitting. Herein, we report an innovative approach to fabricating an Au/BiVO<sub>4</sub>/WO<sub>3</sub> ternary junction that leverages the unique benefits of WO<sub>3</sub> for efficient electron transport, BiVO<sub>4</sub> for broadband light absorption, and Au nanoparticles (NPs) for surface plasmon effects. The BiVO<sub>4</sub>/WO<sub>3</sub> binary junction was constructed by depositing a BiVO<sub>4</sub> layer onto the surface of the WO<sub>3</sub> nanobricks via consecutive drop casting. Au NPs were subsequently integrated into the BiVO<sub>4</sub>/WO<sub>3</sub> structure through electrochromic activation of WO<sub>3</sub>. The optimal BiVO<sub>4</sub> loading for the highest-performing BiVO<sub>4</sub>/WO<sub>3</sub> heterostructure and the light intensity dependence of the photocurrent efficiency were also determined. Flat-band potential measurements confirmed an appropriate band alignment that facilitates electron transfer from BiVO<sub>4</sub> to WO<sub>3</sub>, while work function measurements corroborated the formation of a Schottky barrier between the incorporated Au NPs and BiVO<sub>4</sub>/WO<sub>3</sub>, improving charge separation. The best-performing Au NP-sensitized BiVO<sub>4</sub>/WO<sub>3</sub> photoanode thin films exhibited a photocurrent density of 0.578 mA cm<sup>–2</sup> at 1.23 V vs RHE under AM 1.5G (1 sun) illumination and a maximum applied-bias photoconversion efficiency of 0.036% at 1.09 V vs RHE, representing an enhancement factor of 12 and 2.3 compared to those of pristine BiVO<sub>4</sub> and WO<sub>3</sub> photoanodes, respectively. This study presents a promising and scalable route for fabricating noble metal-sensitized, metal oxide-based nanocomposite photoanodes for solar water splitting.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4090–4102 4090–4102"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02735","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02735","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

开发高效光阳极对于提高光电化学水分离的能量转换效率至关重要。在此,我们报告了一种制造金/BiVO4/WO3 三元结的创新方法,该方法充分利用了 WO3 的高效电子传输、BiVO4 的宽带光吸收以及金纳米粒子(NPs)的表面等离子效应等独特优势。BiVO4/WO3 二元结是通过连续滴铸在 WO3 纳米砖表面沉积 BiVO4 层而构建的。随后,通过电致变色活化 WO3,将金纳米粒子整合到 BiVO4/WO3 结构中。此外,还确定了性能最高的 BiVO4/WO3 异质结构的最佳 BiVO4 负载量以及光电流效率的光强依赖性。平带电位测量证实了适当的带排列有利于电子从 BiVO4 转移到 WO3,而功函数测量则证实了在加入的金纳米粒子和 BiVO4/WO3 之间形成了肖特基势垒,从而改善了电荷分离。在 AM 1.5G(1 个太阳)照明条件下,性能最佳的 Au NP 敏化 BiVO4/WO3 光阳极薄膜在 1.23 V 对比 RHE 时的光电流密度为 0.578 mA cm-2,在 1.09 V 对比 RHE 时的最大外加偏压光电转换效率为 0.036%,与原始 BiVO4 和 WO3 光阳极相比,分别提高了 12 倍和 2.3 倍。这项研究为制造贵金属敏化的、基于金属氧化物的纳米复合光阳极提供了一条前景广阔且可扩展的途径,可用于太阳能水分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Gold Nanoparticles into BiVO4/WO3 Photoanodes via Electrochromic Activation of WO3 for Enhanced Photoelectrochemical Water Splitting

The development of highly efficient photoanodes is crucial for enhancing the energy conversion efficiency in photoelectrochemical water splitting. Herein, we report an innovative approach to fabricating an Au/BiVO4/WO3 ternary junction that leverages the unique benefits of WO3 for efficient electron transport, BiVO4 for broadband light absorption, and Au nanoparticles (NPs) for surface plasmon effects. The BiVO4/WO3 binary junction was constructed by depositing a BiVO4 layer onto the surface of the WO3 nanobricks via consecutive drop casting. Au NPs were subsequently integrated into the BiVO4/WO3 structure through electrochromic activation of WO3. The optimal BiVO4 loading for the highest-performing BiVO4/WO3 heterostructure and the light intensity dependence of the photocurrent efficiency were also determined. Flat-band potential measurements confirmed an appropriate band alignment that facilitates electron transfer from BiVO4 to WO3, while work function measurements corroborated the formation of a Schottky barrier between the incorporated Au NPs and BiVO4/WO3, improving charge separation. The best-performing Au NP-sensitized BiVO4/WO3 photoanode thin films exhibited a photocurrent density of 0.578 mA cm–2 at 1.23 V vs RHE under AM 1.5G (1 sun) illumination and a maximum applied-bias photoconversion efficiency of 0.036% at 1.09 V vs RHE, representing an enhancement factor of 12 and 2.3 compared to those of pristine BiVO4 and WO3 photoanodes, respectively. This study presents a promising and scalable route for fabricating noble metal-sensitized, metal oxide-based nanocomposite photoanodes for solar water splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信