利用偶极π系和质子吸附诱导赝电容合成超交联聚合物的合理设计策略

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Soujanya H. Goudar, Rituprava Dash, Deepu J. Babu, Narendra Kurra* and Kotagiri Venkata Rao*, 
{"title":"利用偶极π系和质子吸附诱导赝电容合成超交联聚合物的合理设计策略","authors":"Soujanya H. Goudar,&nbsp;Rituprava Dash,&nbsp;Deepu J. Babu,&nbsp;Narendra Kurra* and Kotagiri Venkata Rao*,&nbsp;","doi":"10.1021/acsaem.5c0004910.1021/acsaem.5c00049","DOIUrl":null,"url":null,"abstract":"<p >Hyper-cross-linked polymers (HCPs) are one of the important classes of porous organic polymers and are known for their easy preparation under mild conditions by employing readily available precursors. Though there are many HCPs synthesized out of electron-rich π-systems, literature reports of HCPs with π-systems having electron-deficient functional groups such as imides are sparse. This is challenging due to the inherent inefficient nature of Friedel–Crafts alkylation on π-systems with electron-deficient functional groups. In this study, we report a rational strategy for the synthesis of HCPs using benzoperylene imide (BPI) based dipolar π-systems via Friedel–Crafts alkylation. This is achieved by attaching a phenylbutane chain at the imide position, in which the phenyl ring of the phenylbutane serves as the site for Friedel–Crafts alkylation. The resultant <b>BPI-HCP-I</b> exhibits a Brunauer–Emmett–Teller surface area of 544 m<sup>2</sup>/g and strong visible-light absorption up to 600 nm. On the other hand, HCPs synthesized without any phenyl ring at the imide side chain (<b>BPI-HCP-II</b> and <b>BPI-HCP-III</b>) exhibit poor surface area due to inefficient cross-linking via Friedel–Crafts alkylation. Interestingly, <b>BPI-HCP-I</b> showed good electrochemical performance, exhibiting a specific capacitance of 112 F/g, highlighting its reversible proton storage capability. Our study provides the pathway for the synthesis of HCPs with large dipolar π-systems, which are good candidates for strong visible-light absorption and energy storage applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4494–4500 4494–4500"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Design Strategy for the Synthesis of Hyper-Cross-Linked Polymers Using Dipolar π-Systems and Proton Sorption Induced Pseudocapacitance\",\"authors\":\"Soujanya H. Goudar,&nbsp;Rituprava Dash,&nbsp;Deepu J. Babu,&nbsp;Narendra Kurra* and Kotagiri Venkata Rao*,&nbsp;\",\"doi\":\"10.1021/acsaem.5c0004910.1021/acsaem.5c00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hyper-cross-linked polymers (HCPs) are one of the important classes of porous organic polymers and are known for their easy preparation under mild conditions by employing readily available precursors. Though there are many HCPs synthesized out of electron-rich π-systems, literature reports of HCPs with π-systems having electron-deficient functional groups such as imides are sparse. This is challenging due to the inherent inefficient nature of Friedel–Crafts alkylation on π-systems with electron-deficient functional groups. In this study, we report a rational strategy for the synthesis of HCPs using benzoperylene imide (BPI) based dipolar π-systems via Friedel–Crafts alkylation. This is achieved by attaching a phenylbutane chain at the imide position, in which the phenyl ring of the phenylbutane serves as the site for Friedel–Crafts alkylation. The resultant <b>BPI-HCP-I</b> exhibits a Brunauer–Emmett–Teller surface area of 544 m<sup>2</sup>/g and strong visible-light absorption up to 600 nm. On the other hand, HCPs synthesized without any phenyl ring at the imide side chain (<b>BPI-HCP-II</b> and <b>BPI-HCP-III</b>) exhibit poor surface area due to inefficient cross-linking via Friedel–Crafts alkylation. Interestingly, <b>BPI-HCP-I</b> showed good electrochemical performance, exhibiting a specific capacitance of 112 F/g, highlighting its reversible proton storage capability. Our study provides the pathway for the synthesis of HCPs with large dipolar π-systems, which are good candidates for strong visible-light absorption and energy storage applications.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 7\",\"pages\":\"4494–4500 4494–4500\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.5c00049\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.5c00049","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

超交联聚合物(HCPs)是多孔有机聚合物的重要类别之一,因其在温和的条件下利用容易获得的前体即可轻松制备而闻名。虽然有许多 HCP 是由富含电子的 π 系统合成的,但有关具有亚胺等缺电子官能团的 π 系统的 HCP 的文献报道却很少。由于在具有缺电子官能团的 π-体系上进行 Friedel-Crafts 烷基化反应的固有低效性,因此这项研究具有挑战性。在本研究中,我们报告了一种通过 Friedel-Crafts 烷基化反应使用苯并吡咯烷酰亚胺 (BPI) 基双极性 π-体系合成 HCP 的合理策略。这是通过在酰亚胺位置连接苯基丁烷链来实现的,其中苯基丁烷的苯基环是 Friedel-Crafts 烷基化的位点。生成的 BPI-HCP-I 的布鲁瑙尔-埃美特-泰勒比表面积为 544 平方米/克,对 600 纳米波长的可见光有很强的吸收能力。另一方面,合成的 HCP(BPI-HCP-II 和 BPI-HCP-III)在酰亚胺侧链上没有任何苯基环,由于通过 Friedel-Crafts 烷基化交联的效率较低,因此表面积较小。有趣的是,BPI-HCP-I 表现出良好的电化学性能,比电容为 112 F/g,突出了其可逆的质子存储能力。我们的研究为合成具有大双极性 π 系统的 HCP 提供了途径,这些 HCP 是强可见光吸收和储能应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational Design Strategy for the Synthesis of Hyper-Cross-Linked Polymers Using Dipolar π-Systems and Proton Sorption Induced Pseudocapacitance

Rational Design Strategy for the Synthesis of Hyper-Cross-Linked Polymers Using Dipolar π-Systems and Proton Sorption Induced Pseudocapacitance

Hyper-cross-linked polymers (HCPs) are one of the important classes of porous organic polymers and are known for their easy preparation under mild conditions by employing readily available precursors. Though there are many HCPs synthesized out of electron-rich π-systems, literature reports of HCPs with π-systems having electron-deficient functional groups such as imides are sparse. This is challenging due to the inherent inefficient nature of Friedel–Crafts alkylation on π-systems with electron-deficient functional groups. In this study, we report a rational strategy for the synthesis of HCPs using benzoperylene imide (BPI) based dipolar π-systems via Friedel–Crafts alkylation. This is achieved by attaching a phenylbutane chain at the imide position, in which the phenyl ring of the phenylbutane serves as the site for Friedel–Crafts alkylation. The resultant BPI-HCP-I exhibits a Brunauer–Emmett–Teller surface area of 544 m2/g and strong visible-light absorption up to 600 nm. On the other hand, HCPs synthesized without any phenyl ring at the imide side chain (BPI-HCP-II and BPI-HCP-III) exhibit poor surface area due to inefficient cross-linking via Friedel–Crafts alkylation. Interestingly, BPI-HCP-I showed good electrochemical performance, exhibiting a specific capacitance of 112 F/g, highlighting its reversible proton storage capability. Our study provides the pathway for the synthesis of HCPs with large dipolar π-systems, which are good candidates for strong visible-light absorption and energy storage applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信