2,4,6-三(4-氟苯基)环硼辛作为电解质添加剂形成超薄CEI界面膜用于改进的高压LiNi0.8Co0.1Mn0.1O2锂离子电池

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Liqing Li, Jie Liu, Lucheng Li, Jiaming Liu, Run Zhou, Lixu Zhang and Jun Chen*, 
{"title":"2,4,6-三(4-氟苯基)环硼辛作为电解质添加剂形成超薄CEI界面膜用于改进的高压LiNi0.8Co0.1Mn0.1O2锂离子电池","authors":"Liqing Li,&nbsp;Jie Liu,&nbsp;Lucheng Li,&nbsp;Jiaming Liu,&nbsp;Run Zhou,&nbsp;Lixu Zhang and Jun Chen*,&nbsp;","doi":"10.1021/acsaem.4c0303410.1021/acsaem.4c03034","DOIUrl":null,"url":null,"abstract":"<p >Increasing the cutoff voltage for charging lithium batteries can increase the capacity density of lithium-ion batteries. Still, it is also accompanied by some adverse effects, including electrode material corrosion and electrolyte loss. To mitigate these adverse effects, this article reports on a high-voltage catholyte additive, 2,4,6-tris(4-fluorophenyl)cyclo-boroxine (PFTB). Calculation demonstrates that the HOMO energy level of PFTB is lower than that of typical solvents. Consequently, PFTB can decompose selectively to generate a robust and conductive protective CEI membrane. This reduces the occurrence of interfacial side reactions and thus protects the electrode material’s structural integrity. The outcomes of extended cyclical assessments demonstrate that the capacity retention rates are 83.7% (4.2 V), 89.0% (4.3 V), 80.4% (4.4 V), and 81.8% (4.5 V), respectively, when 1.0 wt % PFTB is incorporated into the standard electrolyte. The results of the physical characterization demonstrate that PFTB undergoes preferential decomposition on the cathode, forming a CEI membrane rich in F and B elements. These elements can effectively enhance the conductivity and stability of the CEI membrane. Therefore, adding PFTB to the electrolyte as an additive provides an economical and effective method for studying high-energy lithium batteries.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 7","pages":"4200–4210 4200–4210"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2,4,6-Tris(4-fluorophenyl)cyclo-boroxine as an Electrolytes Additive to Form Ultrathin CEI Interfacial Membrane for Improved High-Voltage LiNi0.8Co0.1Mn0.1O2 Lithium-Ion Batteries\",\"authors\":\"Liqing Li,&nbsp;Jie Liu,&nbsp;Lucheng Li,&nbsp;Jiaming Liu,&nbsp;Run Zhou,&nbsp;Lixu Zhang and Jun Chen*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0303410.1021/acsaem.4c03034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Increasing the cutoff voltage for charging lithium batteries can increase the capacity density of lithium-ion batteries. Still, it is also accompanied by some adverse effects, including electrode material corrosion and electrolyte loss. To mitigate these adverse effects, this article reports on a high-voltage catholyte additive, 2,4,6-tris(4-fluorophenyl)cyclo-boroxine (PFTB). Calculation demonstrates that the HOMO energy level of PFTB is lower than that of typical solvents. Consequently, PFTB can decompose selectively to generate a robust and conductive protective CEI membrane. This reduces the occurrence of interfacial side reactions and thus protects the electrode material’s structural integrity. The outcomes of extended cyclical assessments demonstrate that the capacity retention rates are 83.7% (4.2 V), 89.0% (4.3 V), 80.4% (4.4 V), and 81.8% (4.5 V), respectively, when 1.0 wt % PFTB is incorporated into the standard electrolyte. The results of the physical characterization demonstrate that PFTB undergoes preferential decomposition on the cathode, forming a CEI membrane rich in F and B elements. These elements can effectively enhance the conductivity and stability of the CEI membrane. Therefore, adding PFTB to the electrolyte as an additive provides an economical and effective method for studying high-energy lithium batteries.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"8 7\",\"pages\":\"4200–4210 4200–4210\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c03034\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03034","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

提高锂电池充电的截止电压可以增加锂离子电池的容量密度。但同时也会带来一些不利影响,包括电极材料腐蚀和电解液流失。为了减轻这些不利影响,本文介绍了一种高压阴极溶液添加剂--2,4,6-三(4-氟苯基)环硼氧烷(PFTB)。计算表明,PFTB 的 HOMO 能级低于典型溶剂的 HOMO 能级。因此,PFTB 可以选择性地分解,生成坚固的导电保护 CEI 膜。这减少了界面副反应的发生,从而保护了电极材料的结构完整性。扩展循环评估结果表明,在标准电解液中加入 1.0 wt % 的 PFTB 时,容量保持率分别为 83.7% (4.2 V)、89.0% (4.3 V)、80.4% (4.4 V) 和 81.8% (4.5 V)。物理表征结果表明,PFTB 在阴极上发生优先分解,形成富含 F 和 B 元素的 CEI 膜。这些元素能有效提高 CEI 膜的导电性和稳定性。因此,在电解液中添加 PFTB 作为添加剂为研究高能锂电池提供了一种经济有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

2,4,6-Tris(4-fluorophenyl)cyclo-boroxine as an Electrolytes Additive to Form Ultrathin CEI Interfacial Membrane for Improved High-Voltage LiNi0.8Co0.1Mn0.1O2 Lithium-Ion Batteries

2,4,6-Tris(4-fluorophenyl)cyclo-boroxine as an Electrolytes Additive to Form Ultrathin CEI Interfacial Membrane for Improved High-Voltage LiNi0.8Co0.1Mn0.1O2 Lithium-Ion Batteries

Increasing the cutoff voltage for charging lithium batteries can increase the capacity density of lithium-ion batteries. Still, it is also accompanied by some adverse effects, including electrode material corrosion and electrolyte loss. To mitigate these adverse effects, this article reports on a high-voltage catholyte additive, 2,4,6-tris(4-fluorophenyl)cyclo-boroxine (PFTB). Calculation demonstrates that the HOMO energy level of PFTB is lower than that of typical solvents. Consequently, PFTB can decompose selectively to generate a robust and conductive protective CEI membrane. This reduces the occurrence of interfacial side reactions and thus protects the electrode material’s structural integrity. The outcomes of extended cyclical assessments demonstrate that the capacity retention rates are 83.7% (4.2 V), 89.0% (4.3 V), 80.4% (4.4 V), and 81.8% (4.5 V), respectively, when 1.0 wt % PFTB is incorporated into the standard electrolyte. The results of the physical characterization demonstrate that PFTB undergoes preferential decomposition on the cathode, forming a CEI membrane rich in F and B elements. These elements can effectively enhance the conductivity and stability of the CEI membrane. Therefore, adding PFTB to the electrolyte as an additive provides an economical and effective method for studying high-energy lithium batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信