由瞬态Stokes方程控制并受状态约束的最优控制问题的先验误差估计

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Dmitriy Leykekhman, Boris Vexler, Jakob Wagner
{"title":"由瞬态Stokes方程控制并受状态约束的最优控制问题的先验误差估计","authors":"Dmitriy Leykekhman, Boris Vexler, Jakob Wagner","doi":"10.1093/imanum/draf018","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a state constrained optimal control problem governed by the transient Stokes equations. The state constraint is given by an $L^{2}$ functional in space, which is required to fulfill a pointwise bound in time. The discretization scheme for the Stokes equations consists of inf-sup stable finite elements in space and a discontinuous Galerkin method in time, for which we have recently established best approximation type error estimates. Using these error estimates, for the discrete control problem we derive error estimates and as a by-product we show an improved regularity for the optimal control. We complement our theoretical analysis with numerical results.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A priori error estimates for optimal control problems governed by the transient Stokes equations and subject to state constraints pointwise in time\",\"authors\":\"Dmitriy Leykekhman, Boris Vexler, Jakob Wagner\",\"doi\":\"10.1093/imanum/draf018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a state constrained optimal control problem governed by the transient Stokes equations. The state constraint is given by an $L^{2}$ functional in space, which is required to fulfill a pointwise bound in time. The discretization scheme for the Stokes equations consists of inf-sup stable finite elements in space and a discontinuous Galerkin method in time, for which we have recently established best approximation type error estimates. Using these error estimates, for the discrete control problem we derive error estimates and as a by-product we show an improved regularity for the optimal control. We complement our theoretical analysis with numerical results.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf018\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf018","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类由暂态Stokes方程控制的状态约束最优控制问题。状态约束由空间上的$L^{2}$泛函给出,它需要满足时间上的逐点边界。Stokes方程的离散化方案包括空间上的不稳定有限元和时间上的不连续伽辽金方法,我们最近建立了最佳逼近型误差估计。利用这些误差估计,我们得到了离散控制问题的误差估计,作为一个副产品,我们展示了最优控制的改进的规律性。我们用数值结果来补充理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A priori error estimates for optimal control problems governed by the transient Stokes equations and subject to state constraints pointwise in time
In this paper, we consider a state constrained optimal control problem governed by the transient Stokes equations. The state constraint is given by an $L^{2}$ functional in space, which is required to fulfill a pointwise bound in time. The discretization scheme for the Stokes equations consists of inf-sup stable finite elements in space and a discontinuous Galerkin method in time, for which we have recently established best approximation type error estimates. Using these error estimates, for the discrete control problem we derive error estimates and as a by-product we show an improved regularity for the optimal control. We complement our theoretical analysis with numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信