{"title":"C3aR的下调通过激活YAP1/β-catenin信号通路减轻年龄相关性骨质流失。","authors":"Fangyu Li,Shun Cui","doi":"10.1016/j.jbc.2025.108500","DOIUrl":null,"url":null,"abstract":"The complement system plays an important role in bone growth during physiological development and skeletal homeostasis. However, the specific impact of the complement C3a receptor (C3aR) on age-related bone loss remains unclear. In this study, we found that C3aR expression increased with age and was the same as that of the senescent molecules p53, p21 and p16 in control mice. Knockdown of C3aR reduced the expression of senescence markers and significantly ameliorated bone senescence. Notably, C3aR knockdown in mice effectively reversed age-induced bone loss, which was characterized by an increase in the number of osteoblasts and a decrease in the number of osteoclasts. In an in vitro model of D-gal-induced senescence, increased expression of C3aR correlated with increased expression of senescence markers such as p53, p21, and p16. Treatment with a C3aR antagonist (JR14a) successfully attenuated the expression of these markers of cellular senescence and reduced the proportion of late apoptotic cells. Mechanistically, JR14a treatment mitigated D-gal-mediated inhibition of osteoblastic differentiation in preosteoblasts through activation of the YAP1/β-catenin signalling pathway. In D-gal-induced aging mouse model, treatment with JR14a ameliorates bone microarchitecture and bone loss. In summary, these studies revealed a role for C3aR in regulating bone homeostasis, suggesting that targeting C3aR may be a promising therapeutic strategy for the treatment of age-related osteoporosis.","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":"75 1","pages":"108500"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knockdown of C3aR alleviates age-related bone loss via activation of YAP1/β-catenin signalling.\",\"authors\":\"Fangyu Li,Shun Cui\",\"doi\":\"10.1016/j.jbc.2025.108500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complement system plays an important role in bone growth during physiological development and skeletal homeostasis. However, the specific impact of the complement C3a receptor (C3aR) on age-related bone loss remains unclear. In this study, we found that C3aR expression increased with age and was the same as that of the senescent molecules p53, p21 and p16 in control mice. Knockdown of C3aR reduced the expression of senescence markers and significantly ameliorated bone senescence. Notably, C3aR knockdown in mice effectively reversed age-induced bone loss, which was characterized by an increase in the number of osteoblasts and a decrease in the number of osteoclasts. In an in vitro model of D-gal-induced senescence, increased expression of C3aR correlated with increased expression of senescence markers such as p53, p21, and p16. Treatment with a C3aR antagonist (JR14a) successfully attenuated the expression of these markers of cellular senescence and reduced the proportion of late apoptotic cells. Mechanistically, JR14a treatment mitigated D-gal-mediated inhibition of osteoblastic differentiation in preosteoblasts through activation of the YAP1/β-catenin signalling pathway. In D-gal-induced aging mouse model, treatment with JR14a ameliorates bone microarchitecture and bone loss. In summary, these studies revealed a role for C3aR in regulating bone homeostasis, suggesting that targeting C3aR may be a promising therapeutic strategy for the treatment of age-related osteoporosis.\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\"75 1\",\"pages\":\"108500\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2025.108500\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108500","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Knockdown of C3aR alleviates age-related bone loss via activation of YAP1/β-catenin signalling.
The complement system plays an important role in bone growth during physiological development and skeletal homeostasis. However, the specific impact of the complement C3a receptor (C3aR) on age-related bone loss remains unclear. In this study, we found that C3aR expression increased with age and was the same as that of the senescent molecules p53, p21 and p16 in control mice. Knockdown of C3aR reduced the expression of senescence markers and significantly ameliorated bone senescence. Notably, C3aR knockdown in mice effectively reversed age-induced bone loss, which was characterized by an increase in the number of osteoblasts and a decrease in the number of osteoclasts. In an in vitro model of D-gal-induced senescence, increased expression of C3aR correlated with increased expression of senescence markers such as p53, p21, and p16. Treatment with a C3aR antagonist (JR14a) successfully attenuated the expression of these markers of cellular senescence and reduced the proportion of late apoptotic cells. Mechanistically, JR14a treatment mitigated D-gal-mediated inhibition of osteoblastic differentiation in preosteoblasts through activation of the YAP1/β-catenin signalling pathway. In D-gal-induced aging mouse model, treatment with JR14a ameliorates bone microarchitecture and bone loss. In summary, these studies revealed a role for C3aR in regulating bone homeostasis, suggesting that targeting C3aR may be a promising therapeutic strategy for the treatment of age-related osteoporosis.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.