克莱涅克-希罗科夫定理:等距变换的版本

IF 1.6 3区 数学 Q1 MATHEMATICS
Hranislav Stanković
{"title":"克莱涅克-希罗科夫定理:等距变换的版本","authors":"Hranislav Stanković","doi":"10.1007/s13324-025-01057-7","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a version of the Kleinecke–Shirokov Theorem applicable to isometries on a Hilbert space <span>\\({\\mathcal {H}}\\)</span>. Specifically, we demonstrate that if <span>\\( V \\in {\\mathfrak {B}}({\\mathcal {H}})\\)</span> is a quasinormal partial isometry and <span>\\(T \\in {\\mathfrak {B}}({\\mathcal {H}})\\)</span> satisfies <span>\\({\\mathcal {R}}(T) \\subseteq {\\mathcal {R}}(V)\\)</span>, then </p><div><div><span>$$\\begin{aligned} [V,[V,T]]=0\\quad \\implies \\quad [V,T]=0. \\end{aligned}$$</span></div></div><p>We also consider the mixed commutators of two isometries, and their belonging to the Schatten-von Neumann classes. Finally, we show that the corresponding classical statement regarding normal operators can be derived from our results.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kleinecke–Shirokov theorem: a version for isometric transformations\",\"authors\":\"Hranislav Stanković\",\"doi\":\"10.1007/s13324-025-01057-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a version of the Kleinecke–Shirokov Theorem applicable to isometries on a Hilbert space <span>\\\\({\\\\mathcal {H}}\\\\)</span>. Specifically, we demonstrate that if <span>\\\\( V \\\\in {\\\\mathfrak {B}}({\\\\mathcal {H}})\\\\)</span> is a quasinormal partial isometry and <span>\\\\(T \\\\in {\\\\mathfrak {B}}({\\\\mathcal {H}})\\\\)</span> satisfies <span>\\\\({\\\\mathcal {R}}(T) \\\\subseteq {\\\\mathcal {R}}(V)\\\\)</span>, then </p><div><div><span>$$\\\\begin{aligned} [V,[V,T]]=0\\\\quad \\\\implies \\\\quad [V,T]=0. \\\\end{aligned}$$</span></div></div><p>We also consider the mixed commutators of two isometries, and their belonging to the Schatten-von Neumann classes. Finally, we show that the corresponding classical statement regarding normal operators can be derived from our results.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01057-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01057-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了适用于希尔伯特空间 \({\mathcal {H}}\) 上等距的克莱因克-希罗科夫定理的一个版本。具体来说,我们证明了如果 \( V \in {\mathfrak {B}}({\mathcal {H}}) 是一个准正局部等距,并且 \(T \in {\mathfrak {B}}({\mathcal {H}}) 满足 \({\mathcal {R}}(T) \subseteq {\mathcal {R}}(V)\)、then $$\begin{aligned} [V,[V,T]]=0\quad \implies \quad [V,T]=0.\end{aligned}$$ 我们还考虑了两个等元体的混合换元,以及它们属于沙腾-冯-诺依曼类。最后,我们证明,从我们的结果可以推导出关于正算子的相应经典陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kleinecke–Shirokov theorem: a version for isometric transformations

In this paper, we present a version of the Kleinecke–Shirokov Theorem applicable to isometries on a Hilbert space \({\mathcal {H}}\). Specifically, we demonstrate that if \( V \in {\mathfrak {B}}({\mathcal {H}})\) is a quasinormal partial isometry and \(T \in {\mathfrak {B}}({\mathcal {H}})\) satisfies \({\mathcal {R}}(T) \subseteq {\mathcal {R}}(V)\), then

$$\begin{aligned} [V,[V,T]]=0\quad \implies \quad [V,T]=0. \end{aligned}$$

We also consider the mixed commutators of two isometries, and their belonging to the Schatten-von Neumann classes. Finally, we show that the corresponding classical statement regarding normal operators can be derived from our results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信