通过 DFT 研究异烟肼在四方氮化铝上的给药机制

IF 2.7 4区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Heba Nawfal Al Araji , Ehab Yassen Theab , Shirin Shomurotova , Prakash Kanjariya , Asha Rajiv , Aman Shankhyan , Helen Merina Albert , Harish Kumar , Maher Ali Rusho , Ahmed M. Naglah
{"title":"通过 DFT 研究异烟肼在四方氮化铝上的给药机制","authors":"Heba Nawfal Al Araji ,&nbsp;Ehab Yassen Theab ,&nbsp;Shirin Shomurotova ,&nbsp;Prakash Kanjariya ,&nbsp;Asha Rajiv ,&nbsp;Aman Shankhyan ,&nbsp;Helen Merina Albert ,&nbsp;Harish Kumar ,&nbsp;Maher Ali Rusho ,&nbsp;Ahmed M. Naglah","doi":"10.1016/j.jmgm.2025.109048","DOIUrl":null,"url":null,"abstract":"<div><div>The current work employed DFT simulations to investigate both the reactivity and sensitivity of tetragonal aluminum nitride (T-AlN) as a nanocarrier towards isoniazid (INZ). The solvation effect, workfunction, quantum molecular descriptors (e.g., global softness), charge transports, and adhesion behaviour were analyzed to study the interactions between T-AlN and INZ. The adhesion of INZ onto T-AlN was robust. The adhesion energy in the aqueous phase was −21.89 kcal/mol and it was −40.56 in the gaseous phase. Based on the charge transport analyses, there was substantial charge transport throughout the adhesion. Also, there was a reduction of 59.32 % in the bandgap values for T-AlN following INZ attachment. Furthermore, the workfunction values and NBO analyses suggested that T-AlN can function as a promising nanocarrier for INZ. Additionally, the electronic attributes of T-AlN exhibited strong sensitivity towards the INH molecules. So, it is possible to use T-AlN for biosensing purposes and for tracing drugs through spectrophotometric methods in the human body.</div></div>","PeriodicalId":16361,"journal":{"name":"Journal of molecular graphics & modelling","volume":"138 ","pages":"Article 109048"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug delivery mechanism of isoniazid drug on Tetragonal aluminum nitride by DFT study\",\"authors\":\"Heba Nawfal Al Araji ,&nbsp;Ehab Yassen Theab ,&nbsp;Shirin Shomurotova ,&nbsp;Prakash Kanjariya ,&nbsp;Asha Rajiv ,&nbsp;Aman Shankhyan ,&nbsp;Helen Merina Albert ,&nbsp;Harish Kumar ,&nbsp;Maher Ali Rusho ,&nbsp;Ahmed M. Naglah\",\"doi\":\"10.1016/j.jmgm.2025.109048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The current work employed DFT simulations to investigate both the reactivity and sensitivity of tetragonal aluminum nitride (T-AlN) as a nanocarrier towards isoniazid (INZ). The solvation effect, workfunction, quantum molecular descriptors (e.g., global softness), charge transports, and adhesion behaviour were analyzed to study the interactions between T-AlN and INZ. The adhesion of INZ onto T-AlN was robust. The adhesion energy in the aqueous phase was −21.89 kcal/mol and it was −40.56 in the gaseous phase. Based on the charge transport analyses, there was substantial charge transport throughout the adhesion. Also, there was a reduction of 59.32 % in the bandgap values for T-AlN following INZ attachment. Furthermore, the workfunction values and NBO analyses suggested that T-AlN can function as a promising nanocarrier for INZ. Additionally, the electronic attributes of T-AlN exhibited strong sensitivity towards the INH molecules. So, it is possible to use T-AlN for biosensing purposes and for tracing drugs through spectrophotometric methods in the human body.</div></div>\",\"PeriodicalId\":16361,\"journal\":{\"name\":\"Journal of molecular graphics & modelling\",\"volume\":\"138 \",\"pages\":\"Article 109048\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of molecular graphics & modelling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1093326325001081\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular graphics & modelling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1093326325001081","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文采用离散傅立叶变换模拟研究了四方氮化铝(T-AlN)作为纳米载体对异烟肼(INZ)的反应性和敏感性。通过分析溶剂化效应、功函数、量子分子描述符(如全局柔软度)、电荷输运和粘附行为来研究T-AlN和INZ之间的相互作用。INZ在T-AlN上的附着力很强。水相吸附能为- 21.89 kcal/mol,气相吸附能为- 40.56 kcal/mol。根据电荷输运分析,在整个粘附过程中存在大量的电荷输运。此外,在INZ附着后,T-AlN的带隙值降低了59.32%。此外,工作函数值和NBO分析表明,T-AlN可以作为INZ的纳米载体。此外,T-AlN的电子属性对INH分子表现出较强的敏感性。因此,将T-AlN用于生物传感目的和通过分光光度法在人体内追踪药物是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Drug delivery mechanism of isoniazid drug on Tetragonal aluminum nitride by DFT study

Drug delivery mechanism of isoniazid drug on Tetragonal aluminum nitride by DFT study
The current work employed DFT simulations to investigate both the reactivity and sensitivity of tetragonal aluminum nitride (T-AlN) as a nanocarrier towards isoniazid (INZ). The solvation effect, workfunction, quantum molecular descriptors (e.g., global softness), charge transports, and adhesion behaviour were analyzed to study the interactions between T-AlN and INZ. The adhesion of INZ onto T-AlN was robust. The adhesion energy in the aqueous phase was −21.89 kcal/mol and it was −40.56 in the gaseous phase. Based on the charge transport analyses, there was substantial charge transport throughout the adhesion. Also, there was a reduction of 59.32 % in the bandgap values for T-AlN following INZ attachment. Furthermore, the workfunction values and NBO analyses suggested that T-AlN can function as a promising nanocarrier for INZ. Additionally, the electronic attributes of T-AlN exhibited strong sensitivity towards the INH molecules. So, it is possible to use T-AlN for biosensing purposes and for tracing drugs through spectrophotometric methods in the human body.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of molecular graphics & modelling
Journal of molecular graphics & modelling 生物-计算机:跨学科应用
CiteScore
5.50
自引率
6.90%
发文量
216
审稿时长
35 days
期刊介绍: The Journal of Molecular Graphics and Modelling is devoted to the publication of papers on the uses of computers in theoretical investigations of molecular structure, function, interaction, and design. The scope of the journal includes all aspects of molecular modeling and computational chemistry, including, for instance, the study of molecular shape and properties, molecular simulations, protein and polymer engineering, drug design, materials design, structure-activity and structure-property relationships, database mining, and compound library design. As a primary research journal, JMGM seeks to bring new knowledge to the attention of our readers. As such, submissions to the journal need to not only report results, but must draw conclusions and explore implications of the work presented. Authors are strongly encouraged to bear this in mind when preparing manuscripts. Routine applications of standard modelling approaches, providing only very limited new scientific insight, will not meet our criteria for publication. Reproducibility of reported calculations is an important issue. Wherever possible, we urge authors to enhance their papers with Supplementary Data, for example, in QSAR studies machine-readable versions of molecular datasets or in the development of new force-field parameters versions of the topology and force field parameter files. Routine applications of existing methods that do not lead to genuinely new insight will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信