钢筋混凝土梁柱节点抗剪强度与破坏模式预测的自适应仿真与数据驱动混合模型

IF 3.9 2区 工程技术 Q1 ENGINEERING, CIVIL
Vikas Mehta, Sung Hyun Jang, Min Ho Chey
{"title":"钢筋混凝土梁柱节点抗剪强度与破坏模式预测的自适应仿真与数据驱动混合模型","authors":"Vikas Mehta,&nbsp;Sung Hyun Jang,&nbsp;Min Ho Chey","doi":"10.1016/j.istruc.2025.108835","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the key factors influencing failure modes and shear strength in interior reinforced concrete beam-column joints (<em>RCBCJs</em>) using an integrated machine learning framework. A dataset of 200 experimental records was analyzed, with Principal Component Analysis (<em>PCA</em>) refining essential parameters and the Synthetic Minority Over-sampling Technique (<em>SMOTE</em>) addressing class imbalance through the generation of 136 synthetic instances, equilibrating the minority class to 140 samples. Five classification and regression algorithms were evaluated, with the Random Forest (<em>RF</em>) model demonstrating superior predictive performance. For shear strength prediction, the <em>RF</em> model achieved a training relative absolute error (<em>RAE</em>) of 0.11 and a coefficient of determination (<em>R</em>² = 0.99), outperforming conventional design codes (<em>ACI</em> 318–14, <em>EN</em>1998-I:2004). Testing yielded an <em>RAE</em> of 0.27 and <em>R</em>² = 0.94, demonstrating robust generalizability. In failure mode classification, the model attained 98 % training accuracy and 84 % testing accuracy, surpassing the performance of empirical code-based methods.</div><div>SHapley Additive exPlanations (SHAP) analysis revealed beam width (<em>b</em><sub><em>b</em></sub>) and column height (<em>h</em><sub><em>c</em></sub>) as the most influential factors for failure modes (mean absolute SHAP = 0.09 and 0.05). For shear strength, column height (<em>h</em><sub><em>c</em></sub>) had the highest impact (mean absolute SHAP = 76.52), followed by top (<em>A</em><sub><em>sb,top</em></sub>; 64.02) and bottom (<em>A</em><sub><em>sb,bot</em></sub>; 54.74) beam reinforcement areas. The <em>RF</em> model consistently surpassed existing design standards, validating its capacity to capture complex parameter interactions. To bridge research and practice, a user-friendly graphical user interface (<em>GUI</em>) was developed, enabling streamlined <em>RCBCJ</em> design optimization by integrating data-driven insights with structural engineering principles.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"76 ","pages":"Article 108835"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive simulation and data-driven hybrid modeling for predicting shear strength and failure modes of interior reinforced concrete beam-column joints\",\"authors\":\"Vikas Mehta,&nbsp;Sung Hyun Jang,&nbsp;Min Ho Chey\",\"doi\":\"10.1016/j.istruc.2025.108835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the key factors influencing failure modes and shear strength in interior reinforced concrete beam-column joints (<em>RCBCJs</em>) using an integrated machine learning framework. A dataset of 200 experimental records was analyzed, with Principal Component Analysis (<em>PCA</em>) refining essential parameters and the Synthetic Minority Over-sampling Technique (<em>SMOTE</em>) addressing class imbalance through the generation of 136 synthetic instances, equilibrating the minority class to 140 samples. Five classification and regression algorithms were evaluated, with the Random Forest (<em>RF</em>) model demonstrating superior predictive performance. For shear strength prediction, the <em>RF</em> model achieved a training relative absolute error (<em>RAE</em>) of 0.11 and a coefficient of determination (<em>R</em>² = 0.99), outperforming conventional design codes (<em>ACI</em> 318–14, <em>EN</em>1998-I:2004). Testing yielded an <em>RAE</em> of 0.27 and <em>R</em>² = 0.94, demonstrating robust generalizability. In failure mode classification, the model attained 98 % training accuracy and 84 % testing accuracy, surpassing the performance of empirical code-based methods.</div><div>SHapley Additive exPlanations (SHAP) analysis revealed beam width (<em>b</em><sub><em>b</em></sub>) and column height (<em>h</em><sub><em>c</em></sub>) as the most influential factors for failure modes (mean absolute SHAP = 0.09 and 0.05). For shear strength, column height (<em>h</em><sub><em>c</em></sub>) had the highest impact (mean absolute SHAP = 76.52), followed by top (<em>A</em><sub><em>sb,top</em></sub>; 64.02) and bottom (<em>A</em><sub><em>sb,bot</em></sub>; 54.74) beam reinforcement areas. The <em>RF</em> model consistently surpassed existing design standards, validating its capacity to capture complex parameter interactions. To bridge research and practice, a user-friendly graphical user interface (<em>GUI</em>) was developed, enabling streamlined <em>RCBCJ</em> design optimization by integrating data-driven insights with structural engineering principles.</div></div>\",\"PeriodicalId\":48642,\"journal\":{\"name\":\"Structures\",\"volume\":\"76 \",\"pages\":\"Article 108835\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352012425006496\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012425006496","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用集成的机器学习框架研究了影响钢筋混凝土内部梁柱节点(RCBCJs)破坏模式和抗剪强度的关键因素。对200个实验记录的数据集进行了分析,使用主成分分析(PCA)精炼基本参数,并通过生成136个合成实例来解决类别不平衡问题,将少数类别平衡到140个样本。对五种分类和回归算法进行了评估,随机森林(RF)模型显示出优越的预测性能。对于抗剪强度预测,RF模型的训练相对绝对误差(RAE)为0.11,决定系数(R²= 0.99)优于传统设计规范(ACI 318-14, EN1998-I:2004)。测试结果显示RAE为0.27,R²= 0.94,证明了稳健的通用性。在故障模式分类中,该模型的训练准确率为98 %,测试准确率为84 %,优于基于经验代码的方法。SHapley加性解释(SHAP)分析显示,梁宽(bb)和柱高(hc)是影响破坏模式的主要因素(平均绝对SHAP = 0.09和0.05)。对抗剪强度影响最大的是柱高(hc)(平均绝对SHAP = 76.52),其次是顶(Asb,顶;64.02)和底部(Asb,bot;54.74)梁加固区。RF模型始终超越现有的设计标准,验证了其捕获复杂参数相互作用的能力。为了将研究和实践结合起来,开发了一个用户友好的图形用户界面(GUI),通过将数据驱动的见解与结构工程原理相结合,简化了RCBCJ的设计优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive simulation and data-driven hybrid modeling for predicting shear strength and failure modes of interior reinforced concrete beam-column joints
This study investigates the key factors influencing failure modes and shear strength in interior reinforced concrete beam-column joints (RCBCJs) using an integrated machine learning framework. A dataset of 200 experimental records was analyzed, with Principal Component Analysis (PCA) refining essential parameters and the Synthetic Minority Over-sampling Technique (SMOTE) addressing class imbalance through the generation of 136 synthetic instances, equilibrating the minority class to 140 samples. Five classification and regression algorithms were evaluated, with the Random Forest (RF) model demonstrating superior predictive performance. For shear strength prediction, the RF model achieved a training relative absolute error (RAE) of 0.11 and a coefficient of determination (R² = 0.99), outperforming conventional design codes (ACI 318–14, EN1998-I:2004). Testing yielded an RAE of 0.27 and R² = 0.94, demonstrating robust generalizability. In failure mode classification, the model attained 98 % training accuracy and 84 % testing accuracy, surpassing the performance of empirical code-based methods.
SHapley Additive exPlanations (SHAP) analysis revealed beam width (bb) and column height (hc) as the most influential factors for failure modes (mean absolute SHAP = 0.09 and 0.05). For shear strength, column height (hc) had the highest impact (mean absolute SHAP = 76.52), followed by top (Asb,top; 64.02) and bottom (Asb,bot; 54.74) beam reinforcement areas. The RF model consistently surpassed existing design standards, validating its capacity to capture complex parameter interactions. To bridge research and practice, a user-friendly graphical user interface (GUI) was developed, enabling streamlined RCBCJ design optimization by integrating data-driven insights with structural engineering principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信