Iuliia Voitovich , Nancy Ty , Marion Couderc , Emmanuel Moreau , Caroline Peyrode , Valérie Weber
{"title":"骨关节炎非甾体抗炎前药的设计、合成及体外评价","authors":"Iuliia Voitovich , Nancy Ty , Marion Couderc , Emmanuel Moreau , Caroline Peyrode , Valérie Weber","doi":"10.1016/j.bioorg.2025.108410","DOIUrl":null,"url":null,"abstract":"<div><div>Osteoarthritis (OA), a degenerative joint disease characterized by chronic pain and stiffness, is the most common cause of disability in older adults. To date, OA lacks curative treatment and medical care is limited to symptom relief particularly through the use of oral nonsteroidal anti-inflammatory drugs (NSAIDs). However, gastrointestinal and cardiovascular adverse effects and only limited benefits in long-term relief of pain are still associated. Moreover, efficiency is in part impeded by rapid clearance of the drugs and by the special physiological environment of the joint impeding deep penetration of drugs. Hence, to overcome those limitations and improve patient outcome, developing new therapeutic approaches based on anti-inflammatory prodrugs with prolonged drug residence time within the joints appears as a promising strategy in OA. We report herein the development of NSAID prodrugs, derived from diclofenac and naproxen, bearing a positively charged quaternary ammonium (QA) to target the negative-fixed charge density in cartilage by the mean of electrostatic interactions. Our charge-based targeted approach aims to extend the residence time of NSAID within the cartilaginous tissues, leading to a potential decrease of side effects and improved efficiency of locally released drugs. Syntheses of various amide and esters prodrugs of diclofenac and naproxen bearing a QA function were performed, including some hypoxia-activated prodrugs. Since most diclofenac derivatives suffered from high instability preventing any further development, we focused on the naproxen derivatives that were relatively stable in PBS buffer over a 24-h period even if three different degradation patterns were observed in murine plasma. A preliminary screening of their <em>in vitro</em> anti-inflammatory efficacy highlighted a correlation between the PGE-2 inhibition and these cleavage patterns. These results support further <em>in vitro</em> and <em>in vivo</em> evaluations of four of these derivatives in OA models.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"160 ","pages":"Article 108410"},"PeriodicalIF":4.5000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design, synthesis and in vitro evaluation of non-steroidal anti-inflammatory prodrugs for osteoarthritis\",\"authors\":\"Iuliia Voitovich , Nancy Ty , Marion Couderc , Emmanuel Moreau , Caroline Peyrode , Valérie Weber\",\"doi\":\"10.1016/j.bioorg.2025.108410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Osteoarthritis (OA), a degenerative joint disease characterized by chronic pain and stiffness, is the most common cause of disability in older adults. To date, OA lacks curative treatment and medical care is limited to symptom relief particularly through the use of oral nonsteroidal anti-inflammatory drugs (NSAIDs). However, gastrointestinal and cardiovascular adverse effects and only limited benefits in long-term relief of pain are still associated. Moreover, efficiency is in part impeded by rapid clearance of the drugs and by the special physiological environment of the joint impeding deep penetration of drugs. Hence, to overcome those limitations and improve patient outcome, developing new therapeutic approaches based on anti-inflammatory prodrugs with prolonged drug residence time within the joints appears as a promising strategy in OA. We report herein the development of NSAID prodrugs, derived from diclofenac and naproxen, bearing a positively charged quaternary ammonium (QA) to target the negative-fixed charge density in cartilage by the mean of electrostatic interactions. Our charge-based targeted approach aims to extend the residence time of NSAID within the cartilaginous tissues, leading to a potential decrease of side effects and improved efficiency of locally released drugs. Syntheses of various amide and esters prodrugs of diclofenac and naproxen bearing a QA function were performed, including some hypoxia-activated prodrugs. Since most diclofenac derivatives suffered from high instability preventing any further development, we focused on the naproxen derivatives that were relatively stable in PBS buffer over a 24-h period even if three different degradation patterns were observed in murine plasma. A preliminary screening of their <em>in vitro</em> anti-inflammatory efficacy highlighted a correlation between the PGE-2 inhibition and these cleavage patterns. These results support further <em>in vitro</em> and <em>in vivo</em> evaluations of four of these derivatives in OA models.</div></div>\",\"PeriodicalId\":257,\"journal\":{\"name\":\"Bioorganic Chemistry\",\"volume\":\"160 \",\"pages\":\"Article 108410\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045206825002901\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206825002901","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Design, synthesis and in vitro evaluation of non-steroidal anti-inflammatory prodrugs for osteoarthritis
Osteoarthritis (OA), a degenerative joint disease characterized by chronic pain and stiffness, is the most common cause of disability in older adults. To date, OA lacks curative treatment and medical care is limited to symptom relief particularly through the use of oral nonsteroidal anti-inflammatory drugs (NSAIDs). However, gastrointestinal and cardiovascular adverse effects and only limited benefits in long-term relief of pain are still associated. Moreover, efficiency is in part impeded by rapid clearance of the drugs and by the special physiological environment of the joint impeding deep penetration of drugs. Hence, to overcome those limitations and improve patient outcome, developing new therapeutic approaches based on anti-inflammatory prodrugs with prolonged drug residence time within the joints appears as a promising strategy in OA. We report herein the development of NSAID prodrugs, derived from diclofenac and naproxen, bearing a positively charged quaternary ammonium (QA) to target the negative-fixed charge density in cartilage by the mean of electrostatic interactions. Our charge-based targeted approach aims to extend the residence time of NSAID within the cartilaginous tissues, leading to a potential decrease of side effects and improved efficiency of locally released drugs. Syntheses of various amide and esters prodrugs of diclofenac and naproxen bearing a QA function were performed, including some hypoxia-activated prodrugs. Since most diclofenac derivatives suffered from high instability preventing any further development, we focused on the naproxen derivatives that were relatively stable in PBS buffer over a 24-h period even if three different degradation patterns were observed in murine plasma. A preliminary screening of their in vitro anti-inflammatory efficacy highlighted a correlation between the PGE-2 inhibition and these cleavage patterns. These results support further in vitro and in vivo evaluations of four of these derivatives in OA models.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.