Immanuel Bomze, Federico D’Onofrio, Laura Palagi, Bo Peng
{"title":"基于硬基数约束的线性支持向量机特征选择:一种可扩展的二次分解方法","authors":"Immanuel Bomze, Federico D’Onofrio, Laura Palagi, Bo Peng","doi":"10.1016/j.ejor.2025.03.017","DOIUrl":null,"url":null,"abstract":"In this paper, we study the embedded feature selection problem in linear Support Vector Machines (SVMs), in which a cardinality constraint is employed, leading to an interpretable classification model. The problem is NP-hard due to the presence of the cardinality constraint, even though the original linear SVM amounts to a problem solvable in polynomial time. To handle the hard problem, we first introduce two mixed-integer formulations for which novel semidefinite relaxations are proposed. Exploiting the sparsity pattern of the relaxations, we decompose the problems and obtain equivalent relaxations in a much smaller cone, making the conic approaches scalable. To make the best usage of the decomposed relaxations, we propose heuristics using the information of its optimal solution. Moreover, an exact procedure is proposed by solving a sequence of mixed-integer decomposed semidefinite optimization problems. Numerical results on classical benchmarking datasets are reported, showing the efficiency and effectiveness of our approach.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"108 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature selection in linear support vector machines via a hard cardinality constraint: A scalable conic decomposition approach\",\"authors\":\"Immanuel Bomze, Federico D’Onofrio, Laura Palagi, Bo Peng\",\"doi\":\"10.1016/j.ejor.2025.03.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the embedded feature selection problem in linear Support Vector Machines (SVMs), in which a cardinality constraint is employed, leading to an interpretable classification model. The problem is NP-hard due to the presence of the cardinality constraint, even though the original linear SVM amounts to a problem solvable in polynomial time. To handle the hard problem, we first introduce two mixed-integer formulations for which novel semidefinite relaxations are proposed. Exploiting the sparsity pattern of the relaxations, we decompose the problems and obtain equivalent relaxations in a much smaller cone, making the conic approaches scalable. To make the best usage of the decomposed relaxations, we propose heuristics using the information of its optimal solution. Moreover, an exact procedure is proposed by solving a sequence of mixed-integer decomposed semidefinite optimization problems. Numerical results on classical benchmarking datasets are reported, showing the efficiency and effectiveness of our approach.\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ejor.2025.03.017\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.03.017","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Feature selection in linear support vector machines via a hard cardinality constraint: A scalable conic decomposition approach
In this paper, we study the embedded feature selection problem in linear Support Vector Machines (SVMs), in which a cardinality constraint is employed, leading to an interpretable classification model. The problem is NP-hard due to the presence of the cardinality constraint, even though the original linear SVM amounts to a problem solvable in polynomial time. To handle the hard problem, we first introduce two mixed-integer formulations for which novel semidefinite relaxations are proposed. Exploiting the sparsity pattern of the relaxations, we decompose the problems and obtain equivalent relaxations in a much smaller cone, making the conic approaches scalable. To make the best usage of the decomposed relaxations, we propose heuristics using the information of its optimal solution. Moreover, an exact procedure is proposed by solving a sequence of mixed-integer decomposed semidefinite optimization problems. Numerical results on classical benchmarking datasets are reported, showing the efficiency and effectiveness of our approach.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.