基于互几何边距规范最小化的多类支持向量机

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Yoshifumi Kusunoki , Keiji Tatsumi
{"title":"基于互几何边距规范最小化的多类支持向量机","authors":"Yoshifumi Kusunoki ,&nbsp;Keiji Tatsumi","doi":"10.1016/j.ejor.2025.03.028","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a Support Vector Machine (SVM) method for multi-class classification. It follows multi-objective multi-class SVM (MMSVM), which maximizes class-pair margins on a multi-class linear classifier. The proposed method, called reciprocal-geometric-margin-norm SVM (RGMNSVM) is derived by applying the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm scalarization and convex approximation to MMSVM. Additionally, we develop the margin theory for multi-class linear classification, in order to justify minimization of reciprocal class-pair geometric margins. Experimental results on synthetic datasets explain situations where the proposed RGMNSVM successfully works, while conventional multi-class SVMs fail to fit underlying distributions. Results of classification performance evaluation using benchmark data sets show that RGMNSVM is generally comparable with conventional multi-class SVMs. However, we observe that the proposed approach to geometric margin maximization actually performs better classification accuracy for certain real-world data sets.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"324 2","pages":"Pages 580-589"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-class support vector machine based on minimization of reciprocal-geometric-margin norms\",\"authors\":\"Yoshifumi Kusunoki ,&nbsp;Keiji Tatsumi\",\"doi\":\"10.1016/j.ejor.2025.03.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a Support Vector Machine (SVM) method for multi-class classification. It follows multi-objective multi-class SVM (MMSVM), which maximizes class-pair margins on a multi-class linear classifier. The proposed method, called reciprocal-geometric-margin-norm SVM (RGMNSVM) is derived by applying the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-norm scalarization and convex approximation to MMSVM. Additionally, we develop the margin theory for multi-class linear classification, in order to justify minimization of reciprocal class-pair geometric margins. Experimental results on synthetic datasets explain situations where the proposed RGMNSVM successfully works, while conventional multi-class SVMs fail to fit underlying distributions. Results of classification performance evaluation using benchmark data sets show that RGMNSVM is generally comparable with conventional multi-class SVMs. However, we observe that the proposed approach to geometric margin maximization actually performs better classification accuracy for certain real-world data sets.</div></div>\",\"PeriodicalId\":55161,\"journal\":{\"name\":\"European Journal of Operational Research\",\"volume\":\"324 2\",\"pages\":\"Pages 580-589\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377221725002255\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221725002255","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种支持向量机(SVM)的多类分类方法。它遵循多目标多类支持向量机(MMSVM),在多类线性分类器上最大化类对边界。提出了一种基于几何边范数的支持向量机(RGMNSVM)方法,该方法通过对MMSVM进行p范数标化和凸逼近得到。此外,我们发展了多类线性分类的边际理论,以证明互易类对几何边际的最小化。在合成数据集上的实验结果解释了RGMNSVM成功工作的情况,而传统的多类支持向量机无法拟合底层分布。基于基准数据集的分类性能评价结果表明,RGMNSVM与传统的多类支持向量机具有可比性。然而,我们观察到,所提出的几何边缘最大化方法实际上对某些真实世界的数据集具有更好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-class support vector machine based on minimization of reciprocal-geometric-margin norms
In this paper, we propose a Support Vector Machine (SVM) method for multi-class classification. It follows multi-objective multi-class SVM (MMSVM), which maximizes class-pair margins on a multi-class linear classifier. The proposed method, called reciprocal-geometric-margin-norm SVM (RGMNSVM) is derived by applying the p-norm scalarization and convex approximation to MMSVM. Additionally, we develop the margin theory for multi-class linear classification, in order to justify minimization of reciprocal class-pair geometric margins. Experimental results on synthetic datasets explain situations where the proposed RGMNSVM successfully works, while conventional multi-class SVMs fail to fit underlying distributions. Results of classification performance evaluation using benchmark data sets show that RGMNSVM is generally comparable with conventional multi-class SVMs. However, we observe that the proposed approach to geometric margin maximization actually performs better classification accuracy for certain real-world data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信