动态设施定位问题的逼近算法

IF 0.9 4区 数学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Li Zhang, Qiaoliang Li
{"title":"动态设施定位问题的逼近算法","authors":"Li Zhang, Qiaoliang Li","doi":"10.1007/s10878-025-01282-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider dynamic facility location problem with unit demand (DFLPUD). We propose a 1.52-approximation algorithm that skillfully integrates dual-fitting and greedy augmentation schemes. Our algorithmic framework begins by formulating DFLPUD as a set covering linear integer programming problem. Then we scale the opening cost of all facilities and use the solution of dual-fitting algorithm to seed a local search to yield an improved performance guarantee 1.52. To the best of our knowledge, this is the best known approximation ratio for DFLPUD.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"117 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation algorithm for dynamic facility location problem\",\"authors\":\"Li Zhang, Qiaoliang Li\",\"doi\":\"10.1007/s10878-025-01282-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider dynamic facility location problem with unit demand (DFLPUD). We propose a 1.52-approximation algorithm that skillfully integrates dual-fitting and greedy augmentation schemes. Our algorithmic framework begins by formulating DFLPUD as a set covering linear integer programming problem. Then we scale the opening cost of all facilities and use the solution of dual-fitting algorithm to seed a local search to yield an improved performance guarantee 1.52. To the best of our knowledge, this is the best known approximation ratio for DFLPUD.</p>\",\"PeriodicalId\":50231,\"journal\":{\"name\":\"Journal of Combinatorial Optimization\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10878-025-01282-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01282-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究具有单位需求的动态设施选址问题(DFLPUD)。我们提出了一种1.52近似算法,巧妙地集成了双拟合和贪婪增强方案。我们的算法框架首先将DFLPUD表述为一个覆盖线性整数规划问题的集合。然后,我们对所有设施的开放成本进行伸缩,并使用双拟合算法的解决方案对局部搜索进行种子搜索,从而获得改进的性能保证1.52。据我们所知,这是DFLPUD最著名的近似比率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation algorithm for dynamic facility location problem

In this paper, we consider dynamic facility location problem with unit demand (DFLPUD). We propose a 1.52-approximation algorithm that skillfully integrates dual-fitting and greedy augmentation schemes. Our algorithmic framework begins by formulating DFLPUD as a set covering linear integer programming problem. Then we scale the opening cost of all facilities and use the solution of dual-fitting algorithm to seed a local search to yield an improved performance guarantee 1.52. To the best of our knowledge, this is the best known approximation ratio for DFLPUD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorial Optimization
Journal of Combinatorial Optimization 数学-计算机:跨学科应用
CiteScore
2.00
自引率
10.00%
发文量
83
审稿时长
6 months
期刊介绍: The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering. The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信