在频率水平上改进水下目标检测的特征

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY
Wenling Wang, Zhibin Yu, Mengxing Huang
{"title":"在频率水平上改进水下目标检测的特征","authors":"Wenling Wang, Zhibin Yu, Mengxing Huang","doi":"10.3389/fmars.2025.1544839","DOIUrl":null,"url":null,"abstract":"In recent years, underwater object detection (UOD) has become a prominent research area in the computer vision community. However, existing UOD approaches are still vulnerable to underwater environments, which mainly include light scattering and color shifting. The blurring problem caused by water scattering on underwater images makes the high-frequency texture edge less obvious, affecting the detection effect of objects in the image. To address this issue, we design a multi-scale high-frequency information enhancement module to enhance the high frequency features extracted by the backbone network and improve the detection effect of the network on underwater objects. Another common issue caused by scattering and color shifting is that it can easily change the low-frequency information in the background of underwater images, leading to performance degradation of the same target in different underwater scenes. Therefore, we have also designed a multi-scale gated channel information optimization module to reduce the scattering and color shifting effects on the channel information of underwater images and adaptively compensate the features for different underwater scenes. We tested the detection performance of our designed method on three typical underwater object detection datasets, RUOD, UDD and UODD. The experimental results proved that our method performed better than existing detection methods on underwater object detection datasets.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"60 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refining features for underwater object detection at the frequency level\",\"authors\":\"Wenling Wang, Zhibin Yu, Mengxing Huang\",\"doi\":\"10.3389/fmars.2025.1544839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, underwater object detection (UOD) has become a prominent research area in the computer vision community. However, existing UOD approaches are still vulnerable to underwater environments, which mainly include light scattering and color shifting. The blurring problem caused by water scattering on underwater images makes the high-frequency texture edge less obvious, affecting the detection effect of objects in the image. To address this issue, we design a multi-scale high-frequency information enhancement module to enhance the high frequency features extracted by the backbone network and improve the detection effect of the network on underwater objects. Another common issue caused by scattering and color shifting is that it can easily change the low-frequency information in the background of underwater images, leading to performance degradation of the same target in different underwater scenes. Therefore, we have also designed a multi-scale gated channel information optimization module to reduce the scattering and color shifting effects on the channel information of underwater images and adaptively compensate the features for different underwater scenes. We tested the detection performance of our designed method on three typical underwater object detection datasets, RUOD, UDD and UODD. The experimental results proved that our method performed better than existing detection methods on underwater object detection datasets.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2025.1544839\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1544839","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,水下目标检测(UOD)已成为计算机视觉领域的一个重要研究领域。然而,现有的UOD方法仍然容易受到水下环境的影响,主要包括光散射和色移。水散射对水下图像产生的模糊问题使得高频纹理边缘不太明显,影响图像中物体的检测效果。针对这一问题,我们设计了一个多尺度高频信息增强模块,增强骨干网提取的高频特征,提高网络对水下目标的检测效果。散射和色移带来的另一个常见问题是,它很容易改变水下图像背景中的低频信息,导致同一目标在不同水下场景中的性能下降。因此,我们还设计了一个多尺度门控通道信息优化模块,以减少水下图像通道信息的散射和色移影响,并对不同水下场景的特征进行自适应补偿。在RUOD、UDD和UODD三种典型的水下目标检测数据集上测试了所设计方法的检测性能。实验结果表明,该方法在水下目标检测数据集上的性能优于现有的检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refining features for underwater object detection at the frequency level
In recent years, underwater object detection (UOD) has become a prominent research area in the computer vision community. However, existing UOD approaches are still vulnerable to underwater environments, which mainly include light scattering and color shifting. The blurring problem caused by water scattering on underwater images makes the high-frequency texture edge less obvious, affecting the detection effect of objects in the image. To address this issue, we design a multi-scale high-frequency information enhancement module to enhance the high frequency features extracted by the backbone network and improve the detection effect of the network on underwater objects. Another common issue caused by scattering and color shifting is that it can easily change the low-frequency information in the background of underwater images, leading to performance degradation of the same target in different underwater scenes. Therefore, we have also designed a multi-scale gated channel information optimization module to reduce the scattering and color shifting effects on the channel information of underwater images and adaptively compensate the features for different underwater scenes. We tested the detection performance of our designed method on three typical underwater object detection datasets, RUOD, UDD and UODD. The experimental results proved that our method performed better than existing detection methods on underwater object detection datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信