通过合成数据和零信任集成加强联合特征选择

IF 17.2
Nisha Thorakkattu Madathil;Saed Alrabaee;Abdelkader Nasreddine Belkacem
{"title":"通过合成数据和零信任集成加强联合特征选择","authors":"Nisha Thorakkattu Madathil;Saed Alrabaee;Abdelkader Nasreddine Belkacem","doi":"10.1109/JSAC.2025.3560037","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) allows healthcare organizations to train models using diverse datasets while maintaining patient confidentiality collaboratively. While promising, FL faces challenges in optimizing model accuracy and communication efficiency. To address these, we propose an algorithm that combines feature selection with synthetic data generation, specifically targeting medical datasets. Our method eliminates irrelevant local features, identifies globally relevant ones, and uses synthetic data to initialize model parameters, improving convergence. It also employs a zero-trust model, ensuring that data remain on local devices and only learned weights are shared with the central server, enhancing security. The algorithm improves accuracy and computational efficiency, achieving communication efficiency gains of 4 to 14 through backward elimination and threshold variation techniques. Tested on a federated diabetic dataset, the approach demonstrates significant improvements in the performance and trustworthiness of FL systems for medical applications.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 6","pages":"2126-2140"},"PeriodicalIF":17.2000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Federated Feature Selection Through Synthetic Data and Zero Trust Integration\",\"authors\":\"Nisha Thorakkattu Madathil;Saed Alrabaee;Abdelkader Nasreddine Belkacem\",\"doi\":\"10.1109/JSAC.2025.3560037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning (FL) allows healthcare organizations to train models using diverse datasets while maintaining patient confidentiality collaboratively. While promising, FL faces challenges in optimizing model accuracy and communication efficiency. To address these, we propose an algorithm that combines feature selection with synthetic data generation, specifically targeting medical datasets. Our method eliminates irrelevant local features, identifies globally relevant ones, and uses synthetic data to initialize model parameters, improving convergence. It also employs a zero-trust model, ensuring that data remain on local devices and only learned weights are shared with the central server, enhancing security. The algorithm improves accuracy and computational efficiency, achieving communication efficiency gains of 4 to 14 through backward elimination and threshold variation techniques. Tested on a federated diabetic dataset, the approach demonstrates significant improvements in the performance and trustworthiness of FL systems for medical applications.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"43 6\",\"pages\":\"2126-2140\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10963976/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10963976/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)允许医疗保健组织使用不同的数据集训练模型,同时协作维护患者的机密性。虽然前途光明,但FL在优化模型精度和通信效率方面面临挑战。为了解决这些问题,我们提出了一种将特征选择与合成数据生成相结合的算法,特别是针对医疗数据集。该方法消除不相关的局部特征,识别全局相关特征,并使用合成数据初始化模型参数,提高了收敛性。它还采用了零信任模型,确保数据保留在本地设备上,只与中央服务器共享学习过的权重,从而增强了安全性。该算法通过反向消去和阈值变化技术提高了精度和计算效率,通信效率提高了4 ~ 14倍。在联邦糖尿病数据集上进行的测试表明,该方法在医疗应用的FL系统的性能和可信度方面有了显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Federated Feature Selection Through Synthetic Data and Zero Trust Integration
Federated Learning (FL) allows healthcare organizations to train models using diverse datasets while maintaining patient confidentiality collaboratively. While promising, FL faces challenges in optimizing model accuracy and communication efficiency. To address these, we propose an algorithm that combines feature selection with synthetic data generation, specifically targeting medical datasets. Our method eliminates irrelevant local features, identifies globally relevant ones, and uses synthetic data to initialize model parameters, improving convergence. It also employs a zero-trust model, ensuring that data remain on local devices and only learned weights are shared with the central server, enhancing security. The algorithm improves accuracy and computational efficiency, achieving communication efficiency gains of 4 to 14 through backward elimination and threshold variation techniques. Tested on a federated diabetic dataset, the approach demonstrates significant improvements in the performance and trustworthiness of FL systems for medical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信