利用多源信息的新型混合注意机制重建桥梁梁端位移

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Guang Qu, Mingming Song, Ye Xia, Limin Sun
{"title":"利用多源信息的新型混合注意机制重建桥梁梁端位移","authors":"Guang Qu,&nbsp;Mingming Song,&nbsp;Ye Xia,&nbsp;Limin Sun","doi":"10.1155/stc/8249455","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the realm of structural health monitoring (SHM) of bridge structures, the accurate reconstruction of girder-end displacement (GED) is crucial for identifying potential structural damage and ensuring the monitoring system’s reliability. A novel fine-grained spatial (FGS) attention mechanism, combined with efficient channel attention (ECA), has been proposed to effectively utilize multisource monitoring data. This hybrid attention mechanism has been integrated into an arithmetic optimization algorithm–bidirectional long short-term memory (AOA–BiLSTM) framework for reconstructing GED using non-GED data, including deflection, temperature, strain, and traffic data. Data are organized into a two-dimensional array based on sensor types and spatial locations to capture interchannel and intrachannel correlations. ECA captures local correlations among different sensor types, while the proposed FGS enhances model interpretability by focusing on local dependencies within each sensor type. Huber loss is employed for robust performance, and AOA techniques are used for efficient hyperparameter optimization. Validation with real-world data from a cable-stayed bridge demonstrates the necessity and efficacy of considering multidimensional information correlations in response reconstruction for SHM applications. This work lays a theoretical foundation for improving safety assessments, anomaly detection, data recovery, and virtual sensing in bridge structures.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8249455","citationCount":"0","resultStr":"{\"title\":\"Bridge Girder-End Displacement Reconstruction Using a Novel Hybrid Attention Mechanism Leveraging Multisource Information\",\"authors\":\"Guang Qu,&nbsp;Mingming Song,&nbsp;Ye Xia,&nbsp;Limin Sun\",\"doi\":\"10.1155/stc/8249455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In the realm of structural health monitoring (SHM) of bridge structures, the accurate reconstruction of girder-end displacement (GED) is crucial for identifying potential structural damage and ensuring the monitoring system’s reliability. A novel fine-grained spatial (FGS) attention mechanism, combined with efficient channel attention (ECA), has been proposed to effectively utilize multisource monitoring data. This hybrid attention mechanism has been integrated into an arithmetic optimization algorithm–bidirectional long short-term memory (AOA–BiLSTM) framework for reconstructing GED using non-GED data, including deflection, temperature, strain, and traffic data. Data are organized into a two-dimensional array based on sensor types and spatial locations to capture interchannel and intrachannel correlations. ECA captures local correlations among different sensor types, while the proposed FGS enhances model interpretability by focusing on local dependencies within each sensor type. Huber loss is employed for robust performance, and AOA techniques are used for efficient hyperparameter optimization. Validation with real-world data from a cable-stayed bridge demonstrates the necessity and efficacy of considering multidimensional information correlations in response reconstruction for SHM applications. This work lays a theoretical foundation for improving safety assessments, anomaly detection, data recovery, and virtual sensing in bridge structures.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8249455\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/8249455\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8249455","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在桥梁结构健康监测(SHM)领域,准确重建梁端位移(GED)对于识别潜在的结构损坏和确保监测系统的可靠性至关重要。为了有效利用多源监测数据,我们提出了一种新颖的细粒度空间(FGS)关注机制,并将其与高效通道关注(ECA)相结合。这种混合注意力机制已被集成到算术优化算法-双向长短期记忆(AOA-BiLSTM)框架中,用于使用非 GED 数据(包括挠度、温度、应变和交通数据)重建 GED。根据传感器类型和空间位置将数据组织成一个二维阵列,以捕捉通道间和通道内的相关性。ECA 可捕捉不同传感器类型之间的局部相关性,而所提出的 FGS 则通过关注每种传感器类型内部的局部相关性来增强模型的可解释性。Huber loss 被用于实现稳健的性能,AOA 技术被用于高效的超参数优化。通过对斜拉桥的实际数据进行验证,证明了在 SHM 应用的响应重建中考虑多维信息相关性的必要性和有效性。这项工作为改进桥梁结构的安全评估、异常检测、数据恢复和虚拟传感奠定了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bridge Girder-End Displacement Reconstruction Using a Novel Hybrid Attention Mechanism Leveraging Multisource Information

Bridge Girder-End Displacement Reconstruction Using a Novel Hybrid Attention Mechanism Leveraging Multisource Information

In the realm of structural health monitoring (SHM) of bridge structures, the accurate reconstruction of girder-end displacement (GED) is crucial for identifying potential structural damage and ensuring the monitoring system’s reliability. A novel fine-grained spatial (FGS) attention mechanism, combined with efficient channel attention (ECA), has been proposed to effectively utilize multisource monitoring data. This hybrid attention mechanism has been integrated into an arithmetic optimization algorithm–bidirectional long short-term memory (AOA–BiLSTM) framework for reconstructing GED using non-GED data, including deflection, temperature, strain, and traffic data. Data are organized into a two-dimensional array based on sensor types and spatial locations to capture interchannel and intrachannel correlations. ECA captures local correlations among different sensor types, while the proposed FGS enhances model interpretability by focusing on local dependencies within each sensor type. Huber loss is employed for robust performance, and AOA techniques are used for efficient hyperparameter optimization. Validation with real-world data from a cable-stayed bridge demonstrates the necessity and efficacy of considering multidimensional information correlations in response reconstruction for SHM applications. This work lays a theoretical foundation for improving safety assessments, anomaly detection, data recovery, and virtual sensing in bridge structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信