无限维系统的有限时间输入-状态稳定性

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Xiaorong Sun, Jun Zheng, Guchuan Zhu
{"title":"无限维系统的有限时间输入-状态稳定性","authors":"Xiaorong Sun,&nbsp;Jun Zheng,&nbsp;Guchuan Zhu","doi":"10.1002/rnc.7829","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we extend the notion of finite-time input-to-state stability (FTISS) for finite-dimensional systems to infinite-dimensional systems. More specifically, we first prove an FTISS Lyapunov theorem for a class of infinite-dimensional systems, namely, the existence of an FTISS Lyapunov functional (FTISS-LF) implies the FTISS of the system, and then, provide a sufficient condition for ensuring the existence of an FTISS-LF for a class of abstract infinite-dimensional systems under the framework of compact semigroup theory and Hilbert spaces. As an application of the FTISS Lyapunov theorem, we verify the FTISS for a class of parabolic PDEs involving sublinear terms and distributed in-domain disturbances. Since the non-linear terms of the corresponding abstract system are not Lipschitz continuous, the well-posedness is proved based on the application of compact semigroup theory, and the FTISS is assessed by using the Lyapunov method with the aid of an interpolation inequality. Numerical simulations are conducted to confirm the theoretical results.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 8","pages":"3141-3153"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-Time Input-To-State Stability for Infinite-Dimensional Systems\",\"authors\":\"Xiaorong Sun,&nbsp;Jun Zheng,&nbsp;Guchuan Zhu\",\"doi\":\"10.1002/rnc.7829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we extend the notion of finite-time input-to-state stability (FTISS) for finite-dimensional systems to infinite-dimensional systems. More specifically, we first prove an FTISS Lyapunov theorem for a class of infinite-dimensional systems, namely, the existence of an FTISS Lyapunov functional (FTISS-LF) implies the FTISS of the system, and then, provide a sufficient condition for ensuring the existence of an FTISS-LF for a class of abstract infinite-dimensional systems under the framework of compact semigroup theory and Hilbert spaces. As an application of the FTISS Lyapunov theorem, we verify the FTISS for a class of parabolic PDEs involving sublinear terms and distributed in-domain disturbances. Since the non-linear terms of the corresponding abstract system are not Lipschitz continuous, the well-posedness is proved based on the application of compact semigroup theory, and the FTISS is assessed by using the Lyapunov method with the aid of an interpolation inequality. Numerical simulations are conducted to confirm the theoretical results.</p>\\n </div>\",\"PeriodicalId\":50291,\"journal\":{\"name\":\"International Journal of Robust and Nonlinear Control\",\"volume\":\"35 8\",\"pages\":\"3141-3153\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robust and Nonlinear Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7829\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7829","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文将有限维系统的有限时间输入到状态稳定性(FTISS)概念扩展到无限维系统。更具体地说,我们首先证明了一类无穷维系统的 FTISS Lyapunov 定理,即 FTISS Lyapunov 函数(FTISS-LF)的存在意味着系统的 FTISS,然后在紧凑半群理论和希尔伯特空间的框架下,为一类抽象无穷维系统提供了确保 FTISS-LF 存在的充分条件。作为 FTISS Lyapunov 定理的一个应用,我们验证了一类涉及子线性项和分布式域内扰动的抛物 PDE 的 FTISS。由于相应抽象系统的非线性项不是 Lipschitz 连续的,因此我们应用紧凑半群理论证明了其良好求解性,并借助插值不等式使用 Lyapunov 方法评估了 FTISS。为了证实理论结果,还进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-Time Input-To-State Stability for Infinite-Dimensional Systems

In this paper, we extend the notion of finite-time input-to-state stability (FTISS) for finite-dimensional systems to infinite-dimensional systems. More specifically, we first prove an FTISS Lyapunov theorem for a class of infinite-dimensional systems, namely, the existence of an FTISS Lyapunov functional (FTISS-LF) implies the FTISS of the system, and then, provide a sufficient condition for ensuring the existence of an FTISS-LF for a class of abstract infinite-dimensional systems under the framework of compact semigroup theory and Hilbert spaces. As an application of the FTISS Lyapunov theorem, we verify the FTISS for a class of parabolic PDEs involving sublinear terms and distributed in-domain disturbances. Since the non-linear terms of the corresponding abstract system are not Lipschitz continuous, the well-posedness is proved based on the application of compact semigroup theory, and the FTISS is assessed by using the Lyapunov method with the aid of an interpolation inequality. Numerical simulations are conducted to confirm the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信