Kirsten Zantvoort , Jennifer J. Matthiesen , Pontus Bjurner , Marie Bendix , Ulf Brefeld , Burkhardt Funk , Viktor Kaldo
{"title":"计算机鼠标轨迹在 DMHIs 中的前景与挑战--关于治疗前辍学预测的可行性研究","authors":"Kirsten Zantvoort , Jennifer J. Matthiesen , Pontus Bjurner , Marie Bendix , Ulf Brefeld , Burkhardt Funk , Viktor Kaldo","doi":"10.1016/j.invent.2025.100828","DOIUrl":null,"url":null,"abstract":"<div><div>With the impetus of Digital Mental Health Interventions (DMHIs), complex data can be leveraged to improve and personalize mental health care. However, most approaches rely on a very limited number of often costly features. Computer mouse trajectories can be unobtrusively and cost-efficiently gathered and seamlessly integrated into current baseline processes. Empirical evidence suggests that mouse movements hold information on user motivation and attention, both valuable aspects otherwise difficult to measure at scale. Further, mouse trajectories can already be collected on pre-treatment questionnaires, making them a promising candidate for early predictions informing treatment allocation. Therefore, this paper discusses how to collect and process mouse trajectory data on questionnaires in DMHIs. Covering different complexity levels, we combine hand-crafted features with non-sequential machine learning models, as well as spatiotemporal raw mouse data with state-of-the-art sequential neural networks. The data processing pipeline for the latter includes task-specific pre-processing to convert the variable length trajectories into a single prediction per user. As a feasibility study, we collected mouse trajectory data from 183 patients filling out a pre-intervention depression questionnaire. While the hand-crafted features slightly improve baseline predictions, the spatiotemporal models underperform. However, considering our small data set size, we propose more research to investigate the potential value of this novel and promising data type and provide the necessary steps and open-source code to do so.</div></div>","PeriodicalId":48615,"journal":{"name":"Internet Interventions-The Application of Information Technology in Mental and Behavioural Health","volume":"40 ","pages":"Article 100828"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The promise and challenges of computer mouse trajectories in DMHIs – A feasibility study on pre-treatment dropout predictions\",\"authors\":\"Kirsten Zantvoort , Jennifer J. Matthiesen , Pontus Bjurner , Marie Bendix , Ulf Brefeld , Burkhardt Funk , Viktor Kaldo\",\"doi\":\"10.1016/j.invent.2025.100828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the impetus of Digital Mental Health Interventions (DMHIs), complex data can be leveraged to improve and personalize mental health care. However, most approaches rely on a very limited number of often costly features. Computer mouse trajectories can be unobtrusively and cost-efficiently gathered and seamlessly integrated into current baseline processes. Empirical evidence suggests that mouse movements hold information on user motivation and attention, both valuable aspects otherwise difficult to measure at scale. Further, mouse trajectories can already be collected on pre-treatment questionnaires, making them a promising candidate for early predictions informing treatment allocation. Therefore, this paper discusses how to collect and process mouse trajectory data on questionnaires in DMHIs. Covering different complexity levels, we combine hand-crafted features with non-sequential machine learning models, as well as spatiotemporal raw mouse data with state-of-the-art sequential neural networks. The data processing pipeline for the latter includes task-specific pre-processing to convert the variable length trajectories into a single prediction per user. As a feasibility study, we collected mouse trajectory data from 183 patients filling out a pre-intervention depression questionnaire. While the hand-crafted features slightly improve baseline predictions, the spatiotemporal models underperform. However, considering our small data set size, we propose more research to investigate the potential value of this novel and promising data type and provide the necessary steps and open-source code to do so.</div></div>\",\"PeriodicalId\":48615,\"journal\":{\"name\":\"Internet Interventions-The Application of Information Technology in Mental and Behavioural Health\",\"volume\":\"40 \",\"pages\":\"Article 100828\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Interventions-The Application of Information Technology in Mental and Behavioural Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214782925000296\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Interventions-The Application of Information Technology in Mental and Behavioural Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214782925000296","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
The promise and challenges of computer mouse trajectories in DMHIs – A feasibility study on pre-treatment dropout predictions
With the impetus of Digital Mental Health Interventions (DMHIs), complex data can be leveraged to improve and personalize mental health care. However, most approaches rely on a very limited number of often costly features. Computer mouse trajectories can be unobtrusively and cost-efficiently gathered and seamlessly integrated into current baseline processes. Empirical evidence suggests that mouse movements hold information on user motivation and attention, both valuable aspects otherwise difficult to measure at scale. Further, mouse trajectories can already be collected on pre-treatment questionnaires, making them a promising candidate for early predictions informing treatment allocation. Therefore, this paper discusses how to collect and process mouse trajectory data on questionnaires in DMHIs. Covering different complexity levels, we combine hand-crafted features with non-sequential machine learning models, as well as spatiotemporal raw mouse data with state-of-the-art sequential neural networks. The data processing pipeline for the latter includes task-specific pre-processing to convert the variable length trajectories into a single prediction per user. As a feasibility study, we collected mouse trajectory data from 183 patients filling out a pre-intervention depression questionnaire. While the hand-crafted features slightly improve baseline predictions, the spatiotemporal models underperform. However, considering our small data set size, we propose more research to investigate the potential value of this novel and promising data type and provide the necessary steps and open-source code to do so.
期刊介绍:
Official Journal of the European Society for Research on Internet Interventions (ESRII) and the International Society for Research on Internet Interventions (ISRII).
The aim of Internet Interventions is to publish scientific, peer-reviewed, high-impact research on Internet interventions and related areas.
Internet Interventions welcomes papers on the following subjects:
• Intervention studies targeting the promotion of mental health and featuring the Internet and/or technologies using the Internet as an underlying technology, e.g. computers, smartphone devices, tablets, sensors
• Implementation and dissemination of Internet interventions
• Integration of Internet interventions into existing systems of care
• Descriptions of development and deployment infrastructures
• Internet intervention methodology and theory papers
• Internet-based epidemiology
• Descriptions of new Internet-based technologies and experiments with clinical applications
• Economics of internet interventions (cost-effectiveness)
• Health care policy and Internet interventions
• The role of culture in Internet intervention
• Internet psychometrics
• Ethical issues pertaining to Internet interventions and measurements
• Human-computer interaction and usability research with clinical implications
• Systematic reviews and meta-analysis on Internet interventions