Lennart Volz PhD , Peilin Liu MSc , Thomas Tessonnier PhD , Xiaoda Cong MSc , Marco Durante PhD , Andrea Mairani PhD , Wenbo Gu PhD , Amir Abdollahi MD, PhD , Xuanfeng Ding PhD , Christian Graeff PhD , Taoran Li PhD , Stewart Mein PhD
{"title":"HyperSHArc:质子、氦和碳离子弧治疗多发性脑转移瘤的单等中心立体定向放射手术","authors":"Lennart Volz PhD , Peilin Liu MSc , Thomas Tessonnier PhD , Xiaoda Cong MSc , Marco Durante PhD , Andrea Mairani PhD , Wenbo Gu PhD , Amir Abdollahi MD, PhD , Xuanfeng Ding PhD , Christian Graeff PhD , Taoran Li PhD , Stewart Mein PhD","doi":"10.1016/j.adro.2025.101763","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>This work presents a proof-of-concept study of HyperSHArc, spot-scanning hadron arc (SHArc) therapy for single-isocenter stereotactic radiosurgery of multiple brain metastases (MBMs). HyperSHArc plans using proton, helium, and carbon ions were compared with state-of-the-art volumetric modulated photon arc therapy.</div></div><div><h3>Methods and Materials</h3><div>Treatment design and optimization procedures were devised using commercial and in-house treatment planning systems. Planning and delivery methods considered dedicated energy, spot, and multiarc selection strategies. Proton, helium, and carbon HyperSHArc plans were generated for patients with MBM exhibiting 3 to 11 intracranial lesions with gross tumor volumes (GTVs) between 0.03 and 19.8 cc, at prescribed doses between 19 and 21Gy in a single-fraction. Planning target volumes (PTVs) considered a 1-mm isotropic margin around the GTV, and robust optimization with 2.5%/1 mm criteria for range and position uncertainty was applied. Photon hyper-arc volumetric modulated arc therapy (HA-VMAT) plans were optimized for the PTVs using the HyperArc® single-isocenter stereotactic radiosurgery platform (Varian, Palo Alto, CA, USA).</div></div><div><h3>Results</h3><div>HyperSHArc plans were comparable between particle species, achieving highly conformal target doses and satisfying clinical coverage criteria. Particle arc plans reduced V<sub>2Gy</sub> and V<sub>4Gy</sub> in the healthy brain compared with HA-VMAT, while intermediate doses (V<sub>8Gy</sub>-V<sub>16Gy</sub>) were similar or reduced depending on the number of lesions. Particularly for the case with 11 targets, a considerable reduction in V<sub>12Gy</sub> was observed that could be relevant for reducing the risk of treatment-induced radionecrosis. HyperSHArc using carbon ions boosted dose-averaged linear energy transfer inside the target relevant to overcoming radioresistance factors (>100 keV/μm).</div></div><div><h3>Conclusions</h3><div>We present the first particle arc therapy strategies for MBM. Results demonstrate that with HyperSHArc, dose conformity comparable or superior to HA-VMAT is achievable while reducing the low-dose bath and increasing mean dose-averaged linear energy transfer in the GTV. Our findings suggest that HyperSHArc using light and heavy ions could be an effective and efficient means of treating MBM. Further development of HyperSHArc optimization and delivery is justified.</div></div>","PeriodicalId":7390,"journal":{"name":"Advances in Radiation Oncology","volume":"10 5","pages":"Article 101763"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HyperSHArc: Single-Isocenter Stereotactic Radiosurgery of Multiple Brain Metastases Using Proton, Helium, and Carbon Ion Arc Therapy\",\"authors\":\"Lennart Volz PhD , Peilin Liu MSc , Thomas Tessonnier PhD , Xiaoda Cong MSc , Marco Durante PhD , Andrea Mairani PhD , Wenbo Gu PhD , Amir Abdollahi MD, PhD , Xuanfeng Ding PhD , Christian Graeff PhD , Taoran Li PhD , Stewart Mein PhD\",\"doi\":\"10.1016/j.adro.2025.101763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>This work presents a proof-of-concept study of HyperSHArc, spot-scanning hadron arc (SHArc) therapy for single-isocenter stereotactic radiosurgery of multiple brain metastases (MBMs). HyperSHArc plans using proton, helium, and carbon ions were compared with state-of-the-art volumetric modulated photon arc therapy.</div></div><div><h3>Methods and Materials</h3><div>Treatment design and optimization procedures were devised using commercial and in-house treatment planning systems. Planning and delivery methods considered dedicated energy, spot, and multiarc selection strategies. Proton, helium, and carbon HyperSHArc plans were generated for patients with MBM exhibiting 3 to 11 intracranial lesions with gross tumor volumes (GTVs) between 0.03 and 19.8 cc, at prescribed doses between 19 and 21Gy in a single-fraction. Planning target volumes (PTVs) considered a 1-mm isotropic margin around the GTV, and robust optimization with 2.5%/1 mm criteria for range and position uncertainty was applied. Photon hyper-arc volumetric modulated arc therapy (HA-VMAT) plans were optimized for the PTVs using the HyperArc® single-isocenter stereotactic radiosurgery platform (Varian, Palo Alto, CA, USA).</div></div><div><h3>Results</h3><div>HyperSHArc plans were comparable between particle species, achieving highly conformal target doses and satisfying clinical coverage criteria. Particle arc plans reduced V<sub>2Gy</sub> and V<sub>4Gy</sub> in the healthy brain compared with HA-VMAT, while intermediate doses (V<sub>8Gy</sub>-V<sub>16Gy</sub>) were similar or reduced depending on the number of lesions. Particularly for the case with 11 targets, a considerable reduction in V<sub>12Gy</sub> was observed that could be relevant for reducing the risk of treatment-induced radionecrosis. HyperSHArc using carbon ions boosted dose-averaged linear energy transfer inside the target relevant to overcoming radioresistance factors (>100 keV/μm).</div></div><div><h3>Conclusions</h3><div>We present the first particle arc therapy strategies for MBM. Results demonstrate that with HyperSHArc, dose conformity comparable or superior to HA-VMAT is achievable while reducing the low-dose bath and increasing mean dose-averaged linear energy transfer in the GTV. Our findings suggest that HyperSHArc using light and heavy ions could be an effective and efficient means of treating MBM. Further development of HyperSHArc optimization and delivery is justified.</div></div>\",\"PeriodicalId\":7390,\"journal\":{\"name\":\"Advances in Radiation Oncology\",\"volume\":\"10 5\",\"pages\":\"Article 101763\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245210942500051X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245210942500051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
HyperSHArc: Single-Isocenter Stereotactic Radiosurgery of Multiple Brain Metastases Using Proton, Helium, and Carbon Ion Arc Therapy
Purpose
This work presents a proof-of-concept study of HyperSHArc, spot-scanning hadron arc (SHArc) therapy for single-isocenter stereotactic radiosurgery of multiple brain metastases (MBMs). HyperSHArc plans using proton, helium, and carbon ions were compared with state-of-the-art volumetric modulated photon arc therapy.
Methods and Materials
Treatment design and optimization procedures were devised using commercial and in-house treatment planning systems. Planning and delivery methods considered dedicated energy, spot, and multiarc selection strategies. Proton, helium, and carbon HyperSHArc plans were generated for patients with MBM exhibiting 3 to 11 intracranial lesions with gross tumor volumes (GTVs) between 0.03 and 19.8 cc, at prescribed doses between 19 and 21Gy in a single-fraction. Planning target volumes (PTVs) considered a 1-mm isotropic margin around the GTV, and robust optimization with 2.5%/1 mm criteria for range and position uncertainty was applied. Photon hyper-arc volumetric modulated arc therapy (HA-VMAT) plans were optimized for the PTVs using the HyperArc® single-isocenter stereotactic radiosurgery platform (Varian, Palo Alto, CA, USA).
Results
HyperSHArc plans were comparable between particle species, achieving highly conformal target doses and satisfying clinical coverage criteria. Particle arc plans reduced V2Gy and V4Gy in the healthy brain compared with HA-VMAT, while intermediate doses (V8Gy-V16Gy) were similar or reduced depending on the number of lesions. Particularly for the case with 11 targets, a considerable reduction in V12Gy was observed that could be relevant for reducing the risk of treatment-induced radionecrosis. HyperSHArc using carbon ions boosted dose-averaged linear energy transfer inside the target relevant to overcoming radioresistance factors (>100 keV/μm).
Conclusions
We present the first particle arc therapy strategies for MBM. Results demonstrate that with HyperSHArc, dose conformity comparable or superior to HA-VMAT is achievable while reducing the low-dose bath and increasing mean dose-averaged linear energy transfer in the GTV. Our findings suggest that HyperSHArc using light and heavy ions could be an effective and efficient means of treating MBM. Further development of HyperSHArc optimization and delivery is justified.
期刊介绍:
The purpose of Advances is to provide information for clinicians who use radiation therapy by publishing: Clinical trial reports and reanalyses. Basic science original reports. Manuscripts examining health services research, comparative and cost effectiveness research, and systematic reviews. Case reports documenting unusual problems and solutions. High quality multi and single institutional series, as well as other novel retrospective hypothesis generating series. Timely critical reviews on important topics in radiation oncology, such as side effects. Articles reporting the natural history of disease and patterns of failure, particularly as they relate to treatment volume delineation. Articles on safety and quality in radiation therapy. Essays on clinical experience. Articles on practice transformation in radiation oncology, in particular: Aspects of health policy that may impact the future practice of radiation oncology. How information technology, such as data analytics and systems innovations, will change radiation oncology practice. Articles on imaging as they relate to radiation therapy treatment.