Adolor David Aiyeki , Andrey Tikhonov , Svyatoslav Chugunov
{"title":"Improved Additive Manufacturing of Lunar Regolith Simulant via Digital Light Processing for In-Situ Resource Utilization on the Moon","authors":"Adolor David Aiyeki , Andrey Tikhonov , Svyatoslav Chugunov","doi":"10.1016/j.actaastro.2025.04.009","DOIUrl":null,"url":null,"abstract":"<div><div>The exploration of the Moon necessitates sustainable habitat construction. Establishing a permanent base on the Moon requires solutions for challenges such as transportation costs and logistics, driving the emphasis on In-Situ Resource Utilization (ISRU) techniques including Additive Manufacturing. Given the limited availability of regolith on Earth, researchers utilize simulants in laboratory studies to advance technologies essential for future Moon missions. Despite advancements, a comprehensive understanding of the fundamental properties and processing parameters of sintered lunar regolith still needs to be studied, demonstrating the need for further research. Here, we investigated the fundamental properties of lunar regolith simulant material with respect to the stereolithography-based AM process needed for the engineering design of complex items for lunar applications. Material and mechanical characterization of milled and sintered LHS-1 lunar regolith was done. Test specimens, based on ASTM standards, were fabricated from a 70 wt.% (48.4 vol. %) LHS-1 regolith simulant suspension and sintered up to 1150°C. The compressive, tensile, and flexural strengths were (510.7 ± 133.8) MPa, (8.0 ± 0.9) MPa, and (200.3 ± 49.3) MPa respectively, surpassing values reported in previous studies. These improved mechanical properties are attributed to suspension’s powder loading, layer thickness, exposure time, and sintering temperature. A set of regolith physical and mechanical fundamental material properties was built based on laboratory evaluation and prepared for utilization, with the manufacturing of complex-shaped objects demonstrating the technology's capability for engineering design problems.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"232 ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576525002097","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Improved Additive Manufacturing of Lunar Regolith Simulant via Digital Light Processing for In-Situ Resource Utilization on the Moon
The exploration of the Moon necessitates sustainable habitat construction. Establishing a permanent base on the Moon requires solutions for challenges such as transportation costs and logistics, driving the emphasis on In-Situ Resource Utilization (ISRU) techniques including Additive Manufacturing. Given the limited availability of regolith on Earth, researchers utilize simulants in laboratory studies to advance technologies essential for future Moon missions. Despite advancements, a comprehensive understanding of the fundamental properties and processing parameters of sintered lunar regolith still needs to be studied, demonstrating the need for further research. Here, we investigated the fundamental properties of lunar regolith simulant material with respect to the stereolithography-based AM process needed for the engineering design of complex items for lunar applications. Material and mechanical characterization of milled and sintered LHS-1 lunar regolith was done. Test specimens, based on ASTM standards, were fabricated from a 70 wt.% (48.4 vol. %) LHS-1 regolith simulant suspension and sintered up to 1150°C. The compressive, tensile, and flexural strengths were (510.7 ± 133.8) MPa, (8.0 ± 0.9) MPa, and (200.3 ± 49.3) MPa respectively, surpassing values reported in previous studies. These improved mechanical properties are attributed to suspension’s powder loading, layer thickness, exposure time, and sintering temperature. A set of regolith physical and mechanical fundamental material properties was built based on laboratory evaluation and prepared for utilization, with the manufacturing of complex-shaped objects demonstrating the technology's capability for engineering design problems.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.