ST-RDP:业务功能链VNF资源需求预测的深度时空网络模型

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Junbi Xiao, Qi Wang, Yuhao Zhou
{"title":"ST-RDP:业务功能链VNF资源需求预测的深度时空网络模型","authors":"Junbi Xiao,&nbsp;Qi Wang,&nbsp;Yuhao Zhou","doi":"10.1016/j.comnet.2025.111260","DOIUrl":null,"url":null,"abstract":"<div><div>Virtual Network Functions (VNFs) offer comprehensive network services within Service Function Chains (SFCs), aiming to satisfy the diverse performance requirements of various application scenarios. However, the dynamic and unpredictable nature of the network environment poses substantial challenges for resource allocation across VNF instances, potentially leading to resource under-provisioning or over-provisioning. Consequently, accurate prediction of VNF resource demand is critical for enabling dynamic resource adaptation. To address this challenge, we propose a novel deep spatio-temporal network model, referred to as ST-RDP, for resource demand forecasting. Initially, spatial dependencies among VNFs within the same SFC are captured using an modified Adaptive Graph Convolutional Attention (AGCA) module, which effectively models interdependencies between VNFs. Furthermore, the improved Mamba module is employed to extract time-series features, thereby facilitating accurate spatio-temporal forecasting of resource demand. Experimental evaluations on real-world datasets demonstrate that the proposed approach significantly outperforms existing methods in terms of prediction accuracy and effectiveness.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"264 ","pages":"Article 111260"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ST-RDP: A deep spatio-temporal network model for VNF resource demand prediction of Service Function Chains\",\"authors\":\"Junbi Xiao,&nbsp;Qi Wang,&nbsp;Yuhao Zhou\",\"doi\":\"10.1016/j.comnet.2025.111260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Virtual Network Functions (VNFs) offer comprehensive network services within Service Function Chains (SFCs), aiming to satisfy the diverse performance requirements of various application scenarios. However, the dynamic and unpredictable nature of the network environment poses substantial challenges for resource allocation across VNF instances, potentially leading to resource under-provisioning or over-provisioning. Consequently, accurate prediction of VNF resource demand is critical for enabling dynamic resource adaptation. To address this challenge, we propose a novel deep spatio-temporal network model, referred to as ST-RDP, for resource demand forecasting. Initially, spatial dependencies among VNFs within the same SFC are captured using an modified Adaptive Graph Convolutional Attention (AGCA) module, which effectively models interdependencies between VNFs. Furthermore, the improved Mamba module is employed to extract time-series features, thereby facilitating accurate spatio-temporal forecasting of resource demand. Experimental evaluations on real-world datasets demonstrate that the proposed approach significantly outperforms existing methods in terms of prediction accuracy and effectiveness.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"264 \",\"pages\":\"Article 111260\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128625002282\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625002282","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

虚拟网络功能(Virtual Network Functions, vnf)是指在业务功能链(sfc)内提供全面的网络服务,以满足不同应用场景对不同性能的需求。然而,网络环境的动态性和不可预测性给跨VNF实例的资源分配带来了巨大的挑战,可能导致资源供应不足或供应过剩。因此,准确预测VNF资源需求对于实现动态资源适应至关重要。为了应对这一挑战,我们提出了一种新的深度时空网络模型,称为ST-RDP,用于资源需求预测。最初,使用改进的自适应图卷积注意(AGCA)模块捕获同一SFC内VNFs之间的空间依赖关系,该模块有效地模拟了VNFs之间的相互依赖关系。利用改进的Mamba模块提取时间序列特征,实现资源需求的准确时空预测。对真实数据集的实验评估表明,该方法在预测精度和有效性方面明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ST-RDP: A deep spatio-temporal network model for VNF resource demand prediction of Service Function Chains
Virtual Network Functions (VNFs) offer comprehensive network services within Service Function Chains (SFCs), aiming to satisfy the diverse performance requirements of various application scenarios. However, the dynamic and unpredictable nature of the network environment poses substantial challenges for resource allocation across VNF instances, potentially leading to resource under-provisioning or over-provisioning. Consequently, accurate prediction of VNF resource demand is critical for enabling dynamic resource adaptation. To address this challenge, we propose a novel deep spatio-temporal network model, referred to as ST-RDP, for resource demand forecasting. Initially, spatial dependencies among VNFs within the same SFC are captured using an modified Adaptive Graph Convolutional Attention (AGCA) module, which effectively models interdependencies between VNFs. Furthermore, the improved Mamba module is employed to extract time-series features, thereby facilitating accurate spatio-temporal forecasting of resource demand. Experimental evaluations on real-world datasets demonstrate that the proposed approach significantly outperforms existing methods in terms of prediction accuracy and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信