{"title":"采用标准蒙特卡罗、拟蒙特卡罗和拉丁超立方采样三种方法对萤火虫算法进行参数整定","authors":"Geethu Joy , Christian Huyck , Xin-She Yang","doi":"10.1016/j.jocs.2025.102588","DOIUrl":null,"url":null,"abstract":"<div><div>There are many different nature-inspired algorithms in the literature, and almost all such algorithms have algorithm-dependent parameters that need to be tuned. The proper setting and parameter tuning should be carried out to maximize the performance of the algorithm under consideration. This work is the extension of the recent work on parameter tuning by Joy et al. (2024) presented at the International Conference on Computational Science (ICCS 2024), and the Firefly Algorithm (FA) is tuned using three different methods: the Monte Carlo method, the Quasi-Monte Carlo method and the Latin Hypercube Sampling. The FA with the tuned parameters is then used to solve a set of six different optimization problems, and the possible effect of parameter setting on the quality of the optimal solutions is analyzed. Rigorous statistical hypothesis tests have been carried out, including Student’s t-tests, F-tests, non-parametric Friedman tests and ANOVA. Results show that the performance of the FA is not influenced by the tuning methods used. In addition, the tuned parameter values are largely independent of the tuning methods used. This indicates that the FA can be flexible and equally effective in solving optimization problems, and any of the three tuning methods can be used to tune its parameters effectively.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"87 ","pages":"Article 102588"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter tuning of the firefly algorithm by three tuning methods: Standard Monte Carlo, quasi-Monte Carlo and latin hypercube sampling methods\",\"authors\":\"Geethu Joy , Christian Huyck , Xin-She Yang\",\"doi\":\"10.1016/j.jocs.2025.102588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>There are many different nature-inspired algorithms in the literature, and almost all such algorithms have algorithm-dependent parameters that need to be tuned. The proper setting and parameter tuning should be carried out to maximize the performance of the algorithm under consideration. This work is the extension of the recent work on parameter tuning by Joy et al. (2024) presented at the International Conference on Computational Science (ICCS 2024), and the Firefly Algorithm (FA) is tuned using three different methods: the Monte Carlo method, the Quasi-Monte Carlo method and the Latin Hypercube Sampling. The FA with the tuned parameters is then used to solve a set of six different optimization problems, and the possible effect of parameter setting on the quality of the optimal solutions is analyzed. Rigorous statistical hypothesis tests have been carried out, including Student’s t-tests, F-tests, non-parametric Friedman tests and ANOVA. Results show that the performance of the FA is not influenced by the tuning methods used. In addition, the tuned parameter values are largely independent of the tuning methods used. This indicates that the FA can be flexible and equally effective in solving optimization problems, and any of the three tuning methods can be used to tune its parameters effectively.</div></div>\",\"PeriodicalId\":48907,\"journal\":{\"name\":\"Journal of Computational Science\",\"volume\":\"87 \",\"pages\":\"Article 102588\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877750325000651\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000651","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Parameter tuning of the firefly algorithm by three tuning methods: Standard Monte Carlo, quasi-Monte Carlo and latin hypercube sampling methods
There are many different nature-inspired algorithms in the literature, and almost all such algorithms have algorithm-dependent parameters that need to be tuned. The proper setting and parameter tuning should be carried out to maximize the performance of the algorithm under consideration. This work is the extension of the recent work on parameter tuning by Joy et al. (2024) presented at the International Conference on Computational Science (ICCS 2024), and the Firefly Algorithm (FA) is tuned using three different methods: the Monte Carlo method, the Quasi-Monte Carlo method and the Latin Hypercube Sampling. The FA with the tuned parameters is then used to solve a set of six different optimization problems, and the possible effect of parameter setting on the quality of the optimal solutions is analyzed. Rigorous statistical hypothesis tests have been carried out, including Student’s t-tests, F-tests, non-parametric Friedman tests and ANOVA. Results show that the performance of the FA is not influenced by the tuning methods used. In addition, the tuned parameter values are largely independent of the tuning methods used. This indicates that the FA can be flexible and equally effective in solving optimization problems, and any of the three tuning methods can be used to tune its parameters effectively.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).