Liangzhao Huang , Thomas Schuler , Daniel Brimbal , Frédéric Soisson
{"title":"FCC Ni-Cr-Fe合金长程有序的原子模型","authors":"Liangzhao Huang , Thomas Schuler , Daniel Brimbal , Frédéric Soisson","doi":"10.1016/j.scriptamat.2025.116688","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the thermodynamics and kinetics of the face-centered cubic Ni-Cr-Fe system, focusing on the order-disorder phase transformation in Ni<span><math><msub><mrow></mrow><mrow><mn>0.67</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0.33</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></msub></math></span>Fe<sub><em>x</em></sub> (<span><math><mi>x</mi><mo>=</mo><mn>0</mn></math></span> <!-->–<!--> <!-->0.1) alloys. A pair interaction model (PIM) is developed, with a significant portion based on density functional theory (DFT) calculations and CALPHAD models for binary Ni-Cr and Ni-Fe alloys and further adjusted using experimental order-disorder transformation temperatures and diffusion data. Monte Carlo simulations using this PIM yield detailed phase diagrams and kinetic insights into the ordering process. The simulations reveal that adding up to 10<!--> <!-->at.%<!--> <!-->Fe extends the incubation time by slowing down the atomic diffusion, while slight deviations in Ni-Cr ratio have minimal impact on the ordering kinetics. Although additional experimental data would be required—especially at low temperature and high Fe content—for further validation of the model, our results match reasonably well with the available experimental data on ordering incubation times, capturing the alloy's key characteristics.</div></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"263 ","pages":"Article 116688"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomistic modeling of long-range ordering in FCC Ni-Cr-Fe alloys\",\"authors\":\"Liangzhao Huang , Thomas Schuler , Daniel Brimbal , Frédéric Soisson\",\"doi\":\"10.1016/j.scriptamat.2025.116688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the thermodynamics and kinetics of the face-centered cubic Ni-Cr-Fe system, focusing on the order-disorder phase transformation in Ni<span><math><msub><mrow></mrow><mrow><mn>0.67</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></msub></math></span>Cr<span><math><msub><mrow></mrow><mrow><mn>0.33</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></msub></math></span>Fe<sub><em>x</em></sub> (<span><math><mi>x</mi><mo>=</mo><mn>0</mn></math></span> <!-->–<!--> <!-->0.1) alloys. A pair interaction model (PIM) is developed, with a significant portion based on density functional theory (DFT) calculations and CALPHAD models for binary Ni-Cr and Ni-Fe alloys and further adjusted using experimental order-disorder transformation temperatures and diffusion data. Monte Carlo simulations using this PIM yield detailed phase diagrams and kinetic insights into the ordering process. The simulations reveal that adding up to 10<!--> <!-->at.%<!--> <!-->Fe extends the incubation time by slowing down the atomic diffusion, while slight deviations in Ni-Cr ratio have minimal impact on the ordering kinetics. Although additional experimental data would be required—especially at low temperature and high Fe content—for further validation of the model, our results match reasonably well with the available experimental data on ordering incubation times, capturing the alloy's key characteristics.</div></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"263 \",\"pages\":\"Article 116688\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646225001514\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646225001514","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Atomistic modeling of long-range ordering in FCC Ni-Cr-Fe alloys
This study examines the thermodynamics and kinetics of the face-centered cubic Ni-Cr-Fe system, focusing on the order-disorder phase transformation in NiCrFex ( – 0.1) alloys. A pair interaction model (PIM) is developed, with a significant portion based on density functional theory (DFT) calculations and CALPHAD models for binary Ni-Cr and Ni-Fe alloys and further adjusted using experimental order-disorder transformation temperatures and diffusion data. Monte Carlo simulations using this PIM yield detailed phase diagrams and kinetic insights into the ordering process. The simulations reveal that adding up to 10 at.% Fe extends the incubation time by slowing down the atomic diffusion, while slight deviations in Ni-Cr ratio have minimal impact on the ordering kinetics. Although additional experimental data would be required—especially at low temperature and high Fe content—for further validation of the model, our results match reasonably well with the available experimental data on ordering incubation times, capturing the alloy's key characteristics.
期刊介绍:
Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.