{"title":"利用两个子域加速扩展塔数场筛中单个对数的计算","authors":"Yuqing Zhu, Chang Lv, Jiqiang Liu","doi":"10.1007/s10623-025-01590-3","DOIUrl":null,"url":null,"abstract":"<p>The hardness of discrete logarithm problem (DLP) over finite fields forms the security foundation of many cryptographic schemes. When the characteristic is not small, the state-of-the-art algorithms for solving the DLP are the number field sieve (NFS) and its variants. NFS first computes the logarithms of the factor base, which consists of elements of small norms. Then, for a target element, its logarithm is calculated by establishing a relation with the factor base. Although computing the factor-base elements is the most time-consuming part of NFS, it can be performed only once and treated as pre-computation for a fixed finite field when multiple logarithms need to be computed. In this paper, we present a method for accelerating individual logarithm computation by utilizing two subfields. We focus on the case where the extension degree of the finite field is a multiple of 6 within the extended tower number field sieve framework. Our method allows for the construction of an element with a lower degree, while maintaining the same coefficient bound compared to Guillevic’s method, which uses only one subfield. Consequently, the element derived from our approach enjoys a smaller norm, which will improve the efficiency in individual logarithm computation.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing two subfields to accelerate individual logarithm computation in extended tower number field sieve\",\"authors\":\"Yuqing Zhu, Chang Lv, Jiqiang Liu\",\"doi\":\"10.1007/s10623-025-01590-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The hardness of discrete logarithm problem (DLP) over finite fields forms the security foundation of many cryptographic schemes. When the characteristic is not small, the state-of-the-art algorithms for solving the DLP are the number field sieve (NFS) and its variants. NFS first computes the logarithms of the factor base, which consists of elements of small norms. Then, for a target element, its logarithm is calculated by establishing a relation with the factor base. Although computing the factor-base elements is the most time-consuming part of NFS, it can be performed only once and treated as pre-computation for a fixed finite field when multiple logarithms need to be computed. In this paper, we present a method for accelerating individual logarithm computation by utilizing two subfields. We focus on the case where the extension degree of the finite field is a multiple of 6 within the extended tower number field sieve framework. Our method allows for the construction of an element with a lower degree, while maintaining the same coefficient bound compared to Guillevic’s method, which uses only one subfield. Consequently, the element derived from our approach enjoys a smaller norm, which will improve the efficiency in individual logarithm computation.</p>\",\"PeriodicalId\":11130,\"journal\":{\"name\":\"Designs, Codes and Cryptography\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs, Codes and Cryptography\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-025-01590-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-025-01590-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Utilizing two subfields to accelerate individual logarithm computation in extended tower number field sieve
The hardness of discrete logarithm problem (DLP) over finite fields forms the security foundation of many cryptographic schemes. When the characteristic is not small, the state-of-the-art algorithms for solving the DLP are the number field sieve (NFS) and its variants. NFS first computes the logarithms of the factor base, which consists of elements of small norms. Then, for a target element, its logarithm is calculated by establishing a relation with the factor base. Although computing the factor-base elements is the most time-consuming part of NFS, it can be performed only once and treated as pre-computation for a fixed finite field when multiple logarithms need to be computed. In this paper, we present a method for accelerating individual logarithm computation by utilizing two subfields. We focus on the case where the extension degree of the finite field is a multiple of 6 within the extended tower number field sieve framework. Our method allows for the construction of an element with a lower degree, while maintaining the same coefficient bound compared to Guillevic’s method, which uses only one subfield. Consequently, the element derived from our approach enjoys a smaller norm, which will improve the efficiency in individual logarithm computation.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.