在大型宽视场天文台中识别低能中性和带电宇宙射线事件

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
L. Apolinário, P. Assis, P. Brogueira, R. Conceição, P.J. Costa, G. La Mura, M. Pimenta and B. Tomé
{"title":"在大型宽视场天文台中识别低能中性和带电宇宙射线事件","authors":"L. Apolinário, P. Assis, P. Brogueira, R. Conceição, P.J. Costa, G. La Mura, M. Pimenta and B. Tomé","doi":"10.1088/1475-7516/2025/04/029","DOIUrl":null,"url":null,"abstract":"The lower energy thresholds of large wide-field gamma-ray observatories are often determined by their capability to deal with the very low-energy cosmic ray background. In fact, in observatories with areas of tens or hundreds of thousands of square meters, the number of background events generated by the superposition of random, very low energy cosmic rays is huge and may exceed by far the possible signal events. In this article, we argue that a trigger strategy based on pattern recognition of the shower front can significantly reject the background, keeping a good efficiency and a good angular accuracy (few square degrees) for gamma rays with energies as low as tens of GeV. In this way, alerts can be followed or emitted within time lapses of the order of the second, enabling wide-field gamma-ray observatories to better contribute to global multi-messenger networks of astrophysical observatories.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"24 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of low energy neutral and charged cosmic ray events in large wide field observatories\",\"authors\":\"L. Apolinário, P. Assis, P. Brogueira, R. Conceição, P.J. Costa, G. La Mura, M. Pimenta and B. Tomé\",\"doi\":\"10.1088/1475-7516/2025/04/029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The lower energy thresholds of large wide-field gamma-ray observatories are often determined by their capability to deal with the very low-energy cosmic ray background. In fact, in observatories with areas of tens or hundreds of thousands of square meters, the number of background events generated by the superposition of random, very low energy cosmic rays is huge and may exceed by far the possible signal events. In this article, we argue that a trigger strategy based on pattern recognition of the shower front can significantly reject the background, keeping a good efficiency and a good angular accuracy (few square degrees) for gamma rays with energies as low as tens of GeV. In this way, alerts can be followed or emitted within time lapses of the order of the second, enabling wide-field gamma-ray observatories to better contribute to global multi-messenger networks of astrophysical observatories.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/04/029\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/029","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

大型宽视场伽玛射线天文台的较低能量阈值通常取决于它们处理极低能量宇宙射线背景的能力。事实上,在面积达数万或数十万平方米的天文台中,由随机的、极低能量的宇宙射线叠加产生的背景事件的数量是巨大的,可能远远超过可能的信号事件。在本文中,我们认为基于模式识别的触发策略可以显著地抑制背景,对能量低至数十GeV的伽马射线保持良好的效率和良好的角度精度(几平方度)。通过这种方式,警报可以在秒级的时间间隔内被跟踪或发出,使宽视场伽玛射线天文台能够更好地为天体物理天文台的全球多信使网络做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of low energy neutral and charged cosmic ray events in large wide field observatories
The lower energy thresholds of large wide-field gamma-ray observatories are often determined by their capability to deal with the very low-energy cosmic ray background. In fact, in observatories with areas of tens or hundreds of thousands of square meters, the number of background events generated by the superposition of random, very low energy cosmic rays is huge and may exceed by far the possible signal events. In this article, we argue that a trigger strategy based on pattern recognition of the shower front can significantly reject the background, keeping a good efficiency and a good angular accuracy (few square degrees) for gamma rays with energies as low as tens of GeV. In this way, alerts can be followed or emitted within time lapses of the order of the second, enabling wide-field gamma-ray observatories to better contribute to global multi-messenger networks of astrophysical observatories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信