Songchi Zhou, Ge Song, Haoqi Sun, Deyun Zhang, Yue Leng, M. Brandon Westover, Shenda Hong
{"title":"持续睡眠深度指数注释与深度学习产生新的数字生物标志物睡眠健康","authors":"Songchi Zhou, Ge Song, Haoqi Sun, Deyun Zhang, Yue Leng, M. Brandon Westover, Shenda Hong","doi":"10.1038/s41746-025-01607-0","DOIUrl":null,"url":null,"abstract":"<p>Traditional sleep staging categorizes sleep and wakefulness into five coarse-grained classes, overlooking subtle variations within each stage. We propose a deep learning method to annotate continuous sleep depth index (SDI) with existing discrete sleep staging labels, using polysomnography from over 10,000 recordings across four large-scale cohorts. The results showcased a strong correlation between the decrease in sleep depth index and the increase in duration of arousal. Case studies indicated that SDI captured more nuanced sleep structures than conventional sleep staging. Clustering based on the digital biomarkers extracted from the SDI identified two subtypes of sleep, where participants in the disturbed subtype had a higher prevalence of several poor health conditions and were associated with a 33% increased risk of mortality and a 38% increased risk of fatal coronary heart disease. Our study underscores the utility of SDI in revealing more detailed sleep structures and yielding novel digital biomarkers for sleep medicine.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"6 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous sleep depth index annotation with deep learning yields novel digital biomarkers for sleep health\",\"authors\":\"Songchi Zhou, Ge Song, Haoqi Sun, Deyun Zhang, Yue Leng, M. Brandon Westover, Shenda Hong\",\"doi\":\"10.1038/s41746-025-01607-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional sleep staging categorizes sleep and wakefulness into five coarse-grained classes, overlooking subtle variations within each stage. We propose a deep learning method to annotate continuous sleep depth index (SDI) with existing discrete sleep staging labels, using polysomnography from over 10,000 recordings across four large-scale cohorts. The results showcased a strong correlation between the decrease in sleep depth index and the increase in duration of arousal. Case studies indicated that SDI captured more nuanced sleep structures than conventional sleep staging. Clustering based on the digital biomarkers extracted from the SDI identified two subtypes of sleep, where participants in the disturbed subtype had a higher prevalence of several poor health conditions and were associated with a 33% increased risk of mortality and a 38% increased risk of fatal coronary heart disease. Our study underscores the utility of SDI in revealing more detailed sleep structures and yielding novel digital biomarkers for sleep medicine.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01607-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01607-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Continuous sleep depth index annotation with deep learning yields novel digital biomarkers for sleep health
Traditional sleep staging categorizes sleep and wakefulness into five coarse-grained classes, overlooking subtle variations within each stage. We propose a deep learning method to annotate continuous sleep depth index (SDI) with existing discrete sleep staging labels, using polysomnography from over 10,000 recordings across four large-scale cohorts. The results showcased a strong correlation between the decrease in sleep depth index and the increase in duration of arousal. Case studies indicated that SDI captured more nuanced sleep structures than conventional sleep staging. Clustering based on the digital biomarkers extracted from the SDI identified two subtypes of sleep, where participants in the disturbed subtype had a higher prevalence of several poor health conditions and were associated with a 33% increased risk of mortality and a 38% increased risk of fatal coronary heart disease. Our study underscores the utility of SDI in revealing more detailed sleep structures and yielding novel digital biomarkers for sleep medicine.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.