{"title":"发现有机液流电池电解质降解机制的计算框架","authors":"Xiaotong Zhang, Piotr de Silva","doi":"10.1039/d4sc07640k","DOIUrl":null,"url":null,"abstract":"The stability of organic redox-active molecules is a key challenge for the long-term viability of organic redox flow batteries (ORFBs). Electrolyte degradation leads to capacity fade, reducing the efficiency and lifespan of ORFBs. To systematically investigate degradation mechanisms, we present a computational framework that automates the exploration of degradation pathways. The approach integrates local reactivity descriptors to generate reactive complexes and employs a single-ended process search to discover elementary reaction steps, including transition states and intermediates. The resulting reaction network is iteratively refined with heuristics and human-guided validation. The framework is applied to study the degradation mechanisms of quinone- and quinoxaline-based electrolytes under acidic and basic aqueous conditions. The predicted reaction pathways and degradation products align with experimental observations, highlighting key degradation modes such as Michael addition, disproportionation, dimerization, and electrochemical transformation. The framework provides a valuable tool for <em>in silico</em> screening of stable electrolyte candidates and guiding the molecular design of next-generation ORFBs.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"108 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational framework for discovery of degradation mechanisms of organic flow battery electrolytes\",\"authors\":\"Xiaotong Zhang, Piotr de Silva\",\"doi\":\"10.1039/d4sc07640k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stability of organic redox-active molecules is a key challenge for the long-term viability of organic redox flow batteries (ORFBs). Electrolyte degradation leads to capacity fade, reducing the efficiency and lifespan of ORFBs. To systematically investigate degradation mechanisms, we present a computational framework that automates the exploration of degradation pathways. The approach integrates local reactivity descriptors to generate reactive complexes and employs a single-ended process search to discover elementary reaction steps, including transition states and intermediates. The resulting reaction network is iteratively refined with heuristics and human-guided validation. The framework is applied to study the degradation mechanisms of quinone- and quinoxaline-based electrolytes under acidic and basic aqueous conditions. The predicted reaction pathways and degradation products align with experimental observations, highlighting key degradation modes such as Michael addition, disproportionation, dimerization, and electrochemical transformation. The framework provides a valuable tool for <em>in silico</em> screening of stable electrolyte candidates and guiding the molecular design of next-generation ORFBs.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4sc07640k\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc07640k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Computational framework for discovery of degradation mechanisms of organic flow battery electrolytes
The stability of organic redox-active molecules is a key challenge for the long-term viability of organic redox flow batteries (ORFBs). Electrolyte degradation leads to capacity fade, reducing the efficiency and lifespan of ORFBs. To systematically investigate degradation mechanisms, we present a computational framework that automates the exploration of degradation pathways. The approach integrates local reactivity descriptors to generate reactive complexes and employs a single-ended process search to discover elementary reaction steps, including transition states and intermediates. The resulting reaction network is iteratively refined with heuristics and human-guided validation. The framework is applied to study the degradation mechanisms of quinone- and quinoxaline-based electrolytes under acidic and basic aqueous conditions. The predicted reaction pathways and degradation products align with experimental observations, highlighting key degradation modes such as Michael addition, disproportionation, dimerization, and electrochemical transformation. The framework provides a valuable tool for in silico screening of stable electrolyte candidates and guiding the molecular design of next-generation ORFBs.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.