Hao-Chong Tan, Ka-Pan Shing, Hua-Hua Wang, Yungen Liu and Chi-Ming Che
{"title":"手性铁卟啉(+)- d4 -(por)FeCl催化原位生成重氮乙腈烯烃的高对映选择性环丙烷化,产品周转率高达35000","authors":"Hao-Chong Tan, Ka-Pan Shing, Hua-Hua Wang, Yungen Liu and Chi-Ming Che","doi":"10.1039/D5SC00461F","DOIUrl":null,"url":null,"abstract":"<p >Transition metal-catalyzed asymmetric cyclopropanation of alkenes is an important strategy to construct chiral cyclopropane skeletons of pharmaceutical interest, but highly enantioselective and practical carbene transfer reactions based on Earth abundant and bio-compatible metals are still a difficult challenge. In this work, we use a chiral iron porphyrin (+)-D<small><sub>4</sub></small>-(por)FeCl catalyst and <em>in situ</em> generated α-diazoacetonitrile for highly enantioselective cyclopropanation of arylalkene. This reaction is applicable to a wide range of arylalkenes (44 examples) with yield up to 99%, diastereomeric ratio (dr) up to 93 : 7, and enantiomeric excess (ee) values up to 98%. Importantly, for the cyclopropanation reaction of 3,4-difluorostyrene (1.40 g, 10.0 mmol) with α-diazoacetonitrile in the presence of 0.002 mol% of (+)-D<small><sub>4</sub></small>-(por)FeCl as a catalyst, the turnover number and enantioselectivity of the cyclopropyl nitrile product reached 31 000 and 88% ee, respectively. Using cyclopropyl nitriles as a starting material, downstream functionalization derivatives including cyclopropyl carboxylic acids, cyclopropylamines, and cyclopropylmethanamines can be produced as key intermediates for the preparation of a series of bioactive or drug-like molecules. In addition, the chiral Fe(<small>II</small>)porphyrin–cyanocarbene intermediate [(−)-D<small><sub>4</sub></small>-(por)Fe<small><sup>II</sup></small>(:CHCN)], which is directly responsible for the carbene transfer reaction, has been characterized by <small><sup>1</sup></small>H NMR, HR ESI-MS, UV-vis and ATR-FTIR spectroscopy.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 17","pages":" 7191-7202"},"PeriodicalIF":7.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc00461f?page=search","citationCount":"0","resultStr":"{\"title\":\"Chiral iron porphyrin (+)-D4-(por)FeCl catalyzes highly enantioselective cyclopropanation of alkenes using in situ generated diazoacetonitrile with up to 35 000 product turnover†\",\"authors\":\"Hao-Chong Tan, Ka-Pan Shing, Hua-Hua Wang, Yungen Liu and Chi-Ming Che\",\"doi\":\"10.1039/D5SC00461F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Transition metal-catalyzed asymmetric cyclopropanation of alkenes is an important strategy to construct chiral cyclopropane skeletons of pharmaceutical interest, but highly enantioselective and practical carbene transfer reactions based on Earth abundant and bio-compatible metals are still a difficult challenge. In this work, we use a chiral iron porphyrin (+)-D<small><sub>4</sub></small>-(por)FeCl catalyst and <em>in situ</em> generated α-diazoacetonitrile for highly enantioselective cyclopropanation of arylalkene. This reaction is applicable to a wide range of arylalkenes (44 examples) with yield up to 99%, diastereomeric ratio (dr) up to 93 : 7, and enantiomeric excess (ee) values up to 98%. Importantly, for the cyclopropanation reaction of 3,4-difluorostyrene (1.40 g, 10.0 mmol) with α-diazoacetonitrile in the presence of 0.002 mol% of (+)-D<small><sub>4</sub></small>-(por)FeCl as a catalyst, the turnover number and enantioselectivity of the cyclopropyl nitrile product reached 31 000 and 88% ee, respectively. Using cyclopropyl nitriles as a starting material, downstream functionalization derivatives including cyclopropyl carboxylic acids, cyclopropylamines, and cyclopropylmethanamines can be produced as key intermediates for the preparation of a series of bioactive or drug-like molecules. In addition, the chiral Fe(<small>II</small>)porphyrin–cyanocarbene intermediate [(−)-D<small><sub>4</sub></small>-(por)Fe<small><sup>II</sup></small>(:CHCN)], which is directly responsible for the carbene transfer reaction, has been characterized by <small><sup>1</sup></small>H NMR, HR ESI-MS, UV-vis and ATR-FTIR spectroscopy.</p>\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\" 17\",\"pages\":\" 7191-7202\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc00461f?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc00461f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc00461f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chiral iron porphyrin (+)-D4-(por)FeCl catalyzes highly enantioselective cyclopropanation of alkenes using in situ generated diazoacetonitrile with up to 35 000 product turnover†
Transition metal-catalyzed asymmetric cyclopropanation of alkenes is an important strategy to construct chiral cyclopropane skeletons of pharmaceutical interest, but highly enantioselective and practical carbene transfer reactions based on Earth abundant and bio-compatible metals are still a difficult challenge. In this work, we use a chiral iron porphyrin (+)-D4-(por)FeCl catalyst and in situ generated α-diazoacetonitrile for highly enantioselective cyclopropanation of arylalkene. This reaction is applicable to a wide range of arylalkenes (44 examples) with yield up to 99%, diastereomeric ratio (dr) up to 93 : 7, and enantiomeric excess (ee) values up to 98%. Importantly, for the cyclopropanation reaction of 3,4-difluorostyrene (1.40 g, 10.0 mmol) with α-diazoacetonitrile in the presence of 0.002 mol% of (+)-D4-(por)FeCl as a catalyst, the turnover number and enantioselectivity of the cyclopropyl nitrile product reached 31 000 and 88% ee, respectively. Using cyclopropyl nitriles as a starting material, downstream functionalization derivatives including cyclopropyl carboxylic acids, cyclopropylamines, and cyclopropylmethanamines can be produced as key intermediates for the preparation of a series of bioactive or drug-like molecules. In addition, the chiral Fe(II)porphyrin–cyanocarbene intermediate [(−)-D4-(por)FeII(:CHCN)], which is directly responsible for the carbene transfer reaction, has been characterized by 1H NMR, HR ESI-MS, UV-vis and ATR-FTIR spectroscopy.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.