Peeyush Khare, Jo Machesky, Leah Williams, Mackenzie Humes, Edward C. Fortner, Manjula Canagaratna, Jordan E. Krechmer, Andrew T. Lambe, Albert A. Presto and Drew R. Gentner*,
{"title":"新鲜和老化沥青相关有机气溶胶的化学成分:从环境观察到实验室实验","authors":"Peeyush Khare, Jo Machesky, Leah Williams, Mackenzie Humes, Edward C. Fortner, Manjula Canagaratna, Jordan E. Krechmer, Andrew T. Lambe, Albert A. Presto and Drew R. Gentner*, ","doi":"10.1021/acsestair.4c0019310.1021/acsestair.4c00193","DOIUrl":null,"url":null,"abstract":"<p >Asphalt-related emissions are an understudied source of reactive organic compounds with the potential to form organic aerosol (OA). Ambient aerosol mass spectrometry (AMS) measurements of asphalt-related aerosols near a month-long road paving project showed enhanced ambient OA concentrations with a mix of primary and secondary OA signatures. For comparison, gas-phase emissions from real-world road asphalt samples at application (e.g., 140 °C) and in-use (e.g., 60 °C) temperatures were injected into an environmental chamber and an oxidation flow reactor to simulate varying degrees of oxidative aging while measuring their gas- and aerosol-phase oxidation products. Secondary OA formation was observed via both self-nucleation and condensation, with chemical properties dependent on asphalt temperature and reaction conditions. The chemical composition of less-aged asphalt-related OA observed in outdoor and laboratory measurements was similar to OA from other petrochemical-based sources and hydrocarbon-like OA source factors observed via AMS in previous urban studies. The composition of aged OA varied with the degree of oxidation, similar to oxidized OA factors observed in ambient air. Taken together, these field and laboratory observations suggest that contributions to urban OA during and after application may be challenging to deconvolve from other traditional sources in ambient measurements.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 4","pages":"446–455 446–455"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Composition of Fresh and Aged Asphalt-Related Organic Aerosols: From Ambient Observations to Laboratory Experiments\",\"authors\":\"Peeyush Khare, Jo Machesky, Leah Williams, Mackenzie Humes, Edward C. Fortner, Manjula Canagaratna, Jordan E. Krechmer, Andrew T. Lambe, Albert A. Presto and Drew R. Gentner*, \",\"doi\":\"10.1021/acsestair.4c0019310.1021/acsestair.4c00193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Asphalt-related emissions are an understudied source of reactive organic compounds with the potential to form organic aerosol (OA). Ambient aerosol mass spectrometry (AMS) measurements of asphalt-related aerosols near a month-long road paving project showed enhanced ambient OA concentrations with a mix of primary and secondary OA signatures. For comparison, gas-phase emissions from real-world road asphalt samples at application (e.g., 140 °C) and in-use (e.g., 60 °C) temperatures were injected into an environmental chamber and an oxidation flow reactor to simulate varying degrees of oxidative aging while measuring their gas- and aerosol-phase oxidation products. Secondary OA formation was observed via both self-nucleation and condensation, with chemical properties dependent on asphalt temperature and reaction conditions. The chemical composition of less-aged asphalt-related OA observed in outdoor and laboratory measurements was similar to OA from other petrochemical-based sources and hydrocarbon-like OA source factors observed via AMS in previous urban studies. The composition of aged OA varied with the degree of oxidation, similar to oxidized OA factors observed in ambient air. Taken together, these field and laboratory observations suggest that contributions to urban OA during and after application may be challenging to deconvolve from other traditional sources in ambient measurements.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"2 4\",\"pages\":\"446–455 446–455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.4c00193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemical Composition of Fresh and Aged Asphalt-Related Organic Aerosols: From Ambient Observations to Laboratory Experiments
Asphalt-related emissions are an understudied source of reactive organic compounds with the potential to form organic aerosol (OA). Ambient aerosol mass spectrometry (AMS) measurements of asphalt-related aerosols near a month-long road paving project showed enhanced ambient OA concentrations with a mix of primary and secondary OA signatures. For comparison, gas-phase emissions from real-world road asphalt samples at application (e.g., 140 °C) and in-use (e.g., 60 °C) temperatures were injected into an environmental chamber and an oxidation flow reactor to simulate varying degrees of oxidative aging while measuring their gas- and aerosol-phase oxidation products. Secondary OA formation was observed via both self-nucleation and condensation, with chemical properties dependent on asphalt temperature and reaction conditions. The chemical composition of less-aged asphalt-related OA observed in outdoor and laboratory measurements was similar to OA from other petrochemical-based sources and hydrocarbon-like OA source factors observed via AMS in previous urban studies. The composition of aged OA varied with the degree of oxidation, similar to oxidized OA factors observed in ambient air. Taken together, these field and laboratory observations suggest that contributions to urban OA during and after application may be challenging to deconvolve from other traditional sources in ambient measurements.