Optimizing green diesel-like hydrocarbons from direct hydrodeoxygenation of oleic acid using Zr-MOF/SBA-3 catalyst
BACKGROUND
The increasing environmental concerns and depletion of fossil fuels necessitate the development of sustainable alternatives such as biofuels. Biofuels are renewable and emit fewer pollutants than traditional fossil fuels, making them a critical component of the global energy transition. Hydrodeoxygenation (HDO) is a key reaction in renewable fuel production, removing oxygen from biomass-derived feedstocks to produce hydrocarbon fuels. Oleic acid (OA), a monounsaturated fatty acid abundant in non-edible and waste cooking oils, serves as an ideal feedstock for HDO due to its high unsaturated fatty acid content and availability.
RESULTS
This study investigates direct HDO of OA, a potential route for sustainable biofuels. A novel Zr-MOF/SBA-3 catalyst is meticulously synthesized to leverage the combined strengths of Zr-MOF's active sites and SBA-3's porous structure for optimal HDO performance. Various characterization techniques unveil the catalyst's structural and morphological properties. The impact of reaction temperature, liquid hourly space velocity, and reaction time on diesel-like hydrocarbon conversion and selectivity is explored. Under optimized conditions (360 °C, atmospheric pressure, 10 h), hydrocarbon selectivity reaches 91.6%. Kinetic studies reveal Arrhenius behavior for OA conversion, with an activation energy of 120 kJ mol−1.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.