基于氧化碘化铋的双功能z型异质结构的光电化学水分解

IF 2.8 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Syeda Ammara Shabbir, Fatima Naeem, Muhammad Haris, Muhammad Gulbahar Ashiq, Muhammad Younas, Hamid Latif, Hafsa Faiz, Tomas Tamulevičius, Klaudijus Midveris, Sigitas Tamulevičius
{"title":"基于氧化碘化铋的双功能z型异质结构的光电化学水分解","authors":"Syeda Ammara Shabbir,&nbsp;Fatima Naeem,&nbsp;Muhammad Haris,&nbsp;Muhammad Gulbahar Ashiq,&nbsp;Muhammad Younas,&nbsp;Hamid Latif,&nbsp;Hafsa Faiz,&nbsp;Tomas Tamulevičius,&nbsp;Klaudijus Midveris,&nbsp;Sigitas Tamulevičius","doi":"10.1002/jctb.7845","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> BACKGROUND</h3>\n \n <p>The increasing global energy crisis and environmental pollution necessitate the development of clean and sustainable energy sources. Photoelectrochemical (PEC) water splitting is a promising approach for hydrogen production, utilizing semiconductor materials to convert solar energy into chemical energy. However, single semiconductors suffer from high electron–hole recombination, limiting their efficiency. To address this, a bifunctional Z-scheme heterojunction was constructed using bismuth oxyiodide (BiOI) and carbon-doped graphitic carbon nitride (C-gC₃N₄), with carbon nanotubes (CNTs) as mediators, to enhance charge separation and PEC performance.</p>\n </section>\n \n <section>\n \n <h3> RESULTS</h3>\n \n <p>The fabricated C-gC₃N₄/CNT/BiOI heterojunction exhibited the lowest bandgap energy (1.25 eV), improving light absorption and charge carrier separation. The enhanced conductivity and heterostructure formation resulted in a significantly increased photocurrent density, with reduced overpotential (70 mV) and lower Tafel slopes (89 mV dec<sup>−1</sup>) for the hydrogen evolution reaction and oxygen evolution reaction. UV–visible spectroscopy confirmed a broadened absorption range, and electrochemical impedance spectroscopy demonstrated improved charge transfer efficiency. Transmission electron microscopy, X-ray diffraction and Mott–Schottky analysis confirmed the structural integrity and surface morphology and successful fabrication of the heterojunction.</p>\n </section>\n \n <section>\n \n <h3> CONCLUSION</h3>\n \n <p>The sequential layering of BiOI and C-gC₃N₄ in a bifunctional Z-scheme heterojunction significantly improved PEC water-splitting efficiency. The incorporation of CNTs further enhanced charge transfer, stability and conductivity. These findings highlight the potential of BiOI/C-gC₃N₄ heterostructures as efficient photoelectrocatalysts for sustainable hydrogen production. © 2025 Society of Chemical Industry (SCI).</p>\n </section>\n </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":"100 5","pages":"1096-1104"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bismuth oxyiodide-based Bifunctional Z-scheme Heterostructures for Photoelectrochemical Water Splitting\",\"authors\":\"Syeda Ammara Shabbir,&nbsp;Fatima Naeem,&nbsp;Muhammad Haris,&nbsp;Muhammad Gulbahar Ashiq,&nbsp;Muhammad Younas,&nbsp;Hamid Latif,&nbsp;Hafsa Faiz,&nbsp;Tomas Tamulevičius,&nbsp;Klaudijus Midveris,&nbsp;Sigitas Tamulevičius\",\"doi\":\"10.1002/jctb.7845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> BACKGROUND</h3>\\n \\n <p>The increasing global energy crisis and environmental pollution necessitate the development of clean and sustainable energy sources. Photoelectrochemical (PEC) water splitting is a promising approach for hydrogen production, utilizing semiconductor materials to convert solar energy into chemical energy. However, single semiconductors suffer from high electron–hole recombination, limiting their efficiency. To address this, a bifunctional Z-scheme heterojunction was constructed using bismuth oxyiodide (BiOI) and carbon-doped graphitic carbon nitride (C-gC₃N₄), with carbon nanotubes (CNTs) as mediators, to enhance charge separation and PEC performance.</p>\\n </section>\\n \\n <section>\\n \\n <h3> RESULTS</h3>\\n \\n <p>The fabricated C-gC₃N₄/CNT/BiOI heterojunction exhibited the lowest bandgap energy (1.25 eV), improving light absorption and charge carrier separation. The enhanced conductivity and heterostructure formation resulted in a significantly increased photocurrent density, with reduced overpotential (70 mV) and lower Tafel slopes (89 mV dec<sup>−1</sup>) for the hydrogen evolution reaction and oxygen evolution reaction. UV–visible spectroscopy confirmed a broadened absorption range, and electrochemical impedance spectroscopy demonstrated improved charge transfer efficiency. Transmission electron microscopy, X-ray diffraction and Mott–Schottky analysis confirmed the structural integrity and surface morphology and successful fabrication of the heterojunction.</p>\\n </section>\\n \\n <section>\\n \\n <h3> CONCLUSION</h3>\\n \\n <p>The sequential layering of BiOI and C-gC₃N₄ in a bifunctional Z-scheme heterojunction significantly improved PEC water-splitting efficiency. The incorporation of CNTs further enhanced charge transfer, stability and conductivity. These findings highlight the potential of BiOI/C-gC₃N₄ heterostructures as efficient photoelectrocatalysts for sustainable hydrogen production. © 2025 Society of Chemical Industry (SCI).</p>\\n </section>\\n </div>\",\"PeriodicalId\":15335,\"journal\":{\"name\":\"Journal of chemical technology and biotechnology\",\"volume\":\"100 5\",\"pages\":\"1096-1104\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chemical technology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jctb.7845\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical technology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jctb.7845","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

日益严重的全球能源危机和环境污染要求开发清洁和可持续的能源。光电化学(PEC)水分解是一种很有前途的制氢方法,利用半导体材料将太阳能转化为化学能。然而,单半导体受到高电子-空穴复合的影响,限制了它们的效率。为了解决这一问题,以氧碘化铋(BiOI)和碳掺杂石墨氮化碳(C-gC₃N₄)为介质,以碳纳米管(CNTs)为介质,构建了双功能Z-scheme异质结,以提高电荷分离和PEC性能。结果制备的C-gC₃N₄/CNT/BiOI异质结具有最低的带隙能量(1.25 eV),改善了光吸收和载流子分离。电导率的增强和异质结构的形成导致光电流密度显著增加,析氢反应和析氧反应的过电位降低(70 mV), Tafel斜率降低(89 mV dec−1)。紫外可见光谱证实了其吸收范围的扩大,电化学阻抗谱证实了其电荷转移效率的提高。透射电子显微镜、x射线衍射和Mott-Schottky分析证实了异质结的结构完整性和表面形貌。结论BiOI和C-gC₃N₄在双功能Z-scheme异质结中序层化显著提高了PEC的水分解效率。CNTs的加入进一步增强了电荷转移、稳定性和导电性。这些发现突出了BiOI/C-gC₃N₄异质结构作为可持续制氢的高效光电催化剂的潜力。©2025化学工业学会(SCI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bismuth oxyiodide-based Bifunctional Z-scheme Heterostructures for Photoelectrochemical Water Splitting

BACKGROUND

The increasing global energy crisis and environmental pollution necessitate the development of clean and sustainable energy sources. Photoelectrochemical (PEC) water splitting is a promising approach for hydrogen production, utilizing semiconductor materials to convert solar energy into chemical energy. However, single semiconductors suffer from high electron–hole recombination, limiting their efficiency. To address this, a bifunctional Z-scheme heterojunction was constructed using bismuth oxyiodide (BiOI) and carbon-doped graphitic carbon nitride (C-gC₃N₄), with carbon nanotubes (CNTs) as mediators, to enhance charge separation and PEC performance.

RESULTS

The fabricated C-gC₃N₄/CNT/BiOI heterojunction exhibited the lowest bandgap energy (1.25 eV), improving light absorption and charge carrier separation. The enhanced conductivity and heterostructure formation resulted in a significantly increased photocurrent density, with reduced overpotential (70 mV) and lower Tafel slopes (89 mV dec−1) for the hydrogen evolution reaction and oxygen evolution reaction. UV–visible spectroscopy confirmed a broadened absorption range, and electrochemical impedance spectroscopy demonstrated improved charge transfer efficiency. Transmission electron microscopy, X-ray diffraction and Mott–Schottky analysis confirmed the structural integrity and surface morphology and successful fabrication of the heterojunction.

CONCLUSION

The sequential layering of BiOI and C-gC₃N₄ in a bifunctional Z-scheme heterojunction significantly improved PEC water-splitting efficiency. The incorporation of CNTs further enhanced charge transfer, stability and conductivity. These findings highlight the potential of BiOI/C-gC₃N₄ heterostructures as efficient photoelectrocatalysts for sustainable hydrogen production. © 2025 Society of Chemical Industry (SCI).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
5.90%
发文量
268
审稿时长
1.7 months
期刊介绍: Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信