Syeda Ammara Shabbir, Fatima Naeem, Muhammad Haris, Muhammad Gulbahar Ashiq, Muhammad Younas, Hamid Latif, Hafsa Faiz, Tomas Tamulevičius, Klaudijus Midveris, Sigitas Tamulevičius
Bismuth oxyiodide-based Bifunctional Z-scheme Heterostructures for Photoelectrochemical Water Splitting
BACKGROUND
The increasing global energy crisis and environmental pollution necessitate the development of clean and sustainable energy sources. Photoelectrochemical (PEC) water splitting is a promising approach for hydrogen production, utilizing semiconductor materials to convert solar energy into chemical energy. However, single semiconductors suffer from high electron–hole recombination, limiting their efficiency. To address this, a bifunctional Z-scheme heterojunction was constructed using bismuth oxyiodide (BiOI) and carbon-doped graphitic carbon nitride (C-gC₃N₄), with carbon nanotubes (CNTs) as mediators, to enhance charge separation and PEC performance.
RESULTS
The fabricated C-gC₃N₄/CNT/BiOI heterojunction exhibited the lowest bandgap energy (1.25 eV), improving light absorption and charge carrier separation. The enhanced conductivity and heterostructure formation resulted in a significantly increased photocurrent density, with reduced overpotential (70 mV) and lower Tafel slopes (89 mV dec−1) for the hydrogen evolution reaction and oxygen evolution reaction. UV–visible spectroscopy confirmed a broadened absorption range, and electrochemical impedance spectroscopy demonstrated improved charge transfer efficiency. Transmission electron microscopy, X-ray diffraction and Mott–Schottky analysis confirmed the structural integrity and surface morphology and successful fabrication of the heterojunction.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.